Локальный вариант проблемы Помпейю для семейства круговых секторов

Найдены значения наименьшего радиуса круга, в котором данные наборы множеств являются семействами Помпейю. В качестве наборов множеств рассматриваются различные совокупности круговых секторов. Построено семейство, радиус Помпейю для которого меньше минимального из радиусов Помпейю для каждого из мно...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Труды Института прикладной математики и механики
Datum:2012
1. Verfasser: Машаров, П.А.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124126
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Локальный вариант проблемы Помпейю для семейства круговых секторов / П.А. Машаров // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2012. — Т. 25. — С. 166-171. — Бібліогр.: 9 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Найдены значения наименьшего радиуса круга, в котором данные наборы множеств являются семействами Помпейю. В качестве наборов множеств рассматриваются различные совокупности круговых секторов. Построено семейство, радиус Помпейю для которого меньше минимального из радиусов Помпейю для каждого из множеств. Знайдено значення найменшого радiуса круга, в якому поданi набори множин є сiм’ями Помпейю. У якостi наборiв множин розглянуто рiзнi сукупностi кругових секторiв. Побудовано сiм’ю, радiус Помпейю якої менше нiж мiнiмальний серед радiусiв Помпейю для кожної з множин. The exact value for the smallest radius of the ball, in which the given family of sets is a Pompeiu family is obtained in the paper. The set family consists the circular sectors. The Pompeiu family for which the Pompeiu radius is smaller than the minimum of the Pompeiu radii for each set is constructed in the paper.
ISSN:1683-4720