Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками
Вивчаються лебегiвська структура, тополого-метричнi i фрактальнi властивостi спектра (мiнiмального замкненого носiя) розподiлу випадкової пiдсуми заданого знакододатного ряду Люрота з незалежними доданками, поведiнка модуля її характеристичної функцiї на нескiнченностi. Повнiстю вивчено структуру, з...
Gespeichert in:
| Veröffentlicht in: | Труды Института прикладной математики и механики |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , , |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/124154 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками / Я.В. Гончаренко, Ю.І. Жихарєва, М.В. Працьовитий // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2013. — Т. 26. — С. 46-57. — Бібліогр.: 16 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124154 |
|---|---|
| record_format |
dspace |
| spelling |
Гончаренко, Я.В. Жихарєва, Ю.І Працьовитий, М.В. 2017-09-21T15:54:39Z 2017-09-21T15:54:39Z 2013 Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками / Я.В. Гончаренко, Ю.І. Жихарєва, М.В. Працьовитий // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2013. — Т. 26. — С. 46-57. — Бібліогр.: 16 назв. — укр. 1683-4720 https://nasplib.isofts.kiev.ua/handle/123456789/124154 519.21+511.72 Вивчаються лебегiвська структура, тополого-метричнi i фрактальнi властивостi спектра (мiнiмального замкненого носiя) розподiлу випадкової пiдсуми заданого знакододатного ряду Люрота з незалежними доданками, поведiнка модуля її характеристичної функцiї на нескiнченностi. Повнiстю вивчено структуру, знайдено необхiднi та достатнi умови аномальної фрактальностi, нульвимiрностi Лебега та канторовостi спектра. Доведено, що сингулярний розподiл пiдсуми є близьким до дискретного за поведiнкою характеристичної функцiї на нескiнченностi, якщо ряд не є перiодичним. Изучаются лебеговская структура, тополого-метрические и фрактальные свойства спектра (минимального замкнутого носителя) распределения случайной подсуммы заданного знакоположительного ряда Люрота с независимыми слагаемыми, поведение модуля ее характеристической функции на бесконечности. Полностью изучена структура, найдены необходимые и достаточные условия аномальной фрактальности, ноль-мерности Лебега и канторовости спектра. Доказано, что сингулярное распределение подсуммы близко к дискретному по поведению характеристической функции на бесконечности, если ряд не периодический. The paper is devoted to random incomplete sum of given positive L¨uroth series with independent terms. We study Lebesgue structure, topological, metric and fractal properties of spectrum (i.e., minimal closed support) of distribution of this random variable as well as behavior at infinity of absolute value of its characteristic function. Structure of distribution is studied completely. Necessary and sufficient conditions for spectrum to be anomalously fractal, of zero Lebesgue measure and of Cantor type are found.We prove that singular distribution of incomplete sum is close to discrete distribution by behaviour of characteristic function at infinity if series is not periodic. uk Інститут прикладної математики і механіки НАН України Труды Института прикладной математики и механики Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками Cвойства распределения случайной подсуммы знакоположительного ряда Люрота с независимыми слагаемыми Properties of distribution of random incomplete sum of given positive L¨uroth series with independent terms published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками |
| spellingShingle |
Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками Гончаренко, Я.В. Жихарєва, Ю.І Працьовитий, М.В. |
| title_short |
Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками |
| title_full |
Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками |
| title_fullStr |
Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками |
| title_full_unstemmed |
Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками |
| title_sort |
властивості розподілу випадкової підсуми знакододатного ряду люрота з незалежними доданками |
| author |
Гончаренко, Я.В. Жихарєва, Ю.І Працьовитий, М.В. |
| author_facet |
Гончаренко, Я.В. Жихарєва, Ю.І Працьовитий, М.В. |
| publishDate |
2013 |
| language |
Ukrainian |
| container_title |
Труды Института прикладной математики и механики |
| publisher |
Інститут прикладної математики і механіки НАН України |
| title_alt |
Cвойства распределения случайной подсуммы знакоположительного ряда Люрота с независимыми слагаемыми Properties of distribution of random incomplete sum of given positive L¨uroth series with independent terms |
| description |
Вивчаються лебегiвська структура, тополого-метричнi i фрактальнi властивостi спектра (мiнiмального замкненого носiя) розподiлу випадкової пiдсуми заданого знакододатного ряду Люрота з незалежними доданками, поведiнка модуля її характеристичної функцiї на нескiнченностi. Повнiстю вивчено структуру, знайдено необхiднi та достатнi умови аномальної фрактальностi, нульвимiрностi Лебега та канторовостi спектра. Доведено, що сингулярний розподiл пiдсуми є близьким до дискретного за поведiнкою характеристичної функцiї на нескiнченностi, якщо ряд не є перiодичним.
Изучаются лебеговская структура, тополого-метрические и фрактальные свойства спектра (минимального замкнутого носителя) распределения случайной подсуммы заданного знакоположительного ряда Люрота с независимыми слагаемыми, поведение модуля ее характеристической функции на бесконечности. Полностью изучена структура, найдены необходимые и достаточные условия аномальной фрактальности, ноль-мерности Лебега и канторовости спектра. Доказано, что сингулярное распределение подсуммы близко к дискретному по поведению характеристической функции на бесконечности, если ряд не периодический.
The paper is devoted to random incomplete sum of given positive L¨uroth series with independent terms. We study Lebesgue structure, topological, metric and fractal properties of spectrum (i.e., minimal closed support) of distribution of this random variable as well as behavior at infinity of absolute value of its characteristic function. Structure of distribution is studied completely. Necessary and sufficient conditions for spectrum to be anomalously fractal, of zero Lebesgue measure and of Cantor type are found.We prove that singular distribution of incomplete sum is close to discrete distribution by behaviour of characteristic function at infinity if series is not periodic.
|
| issn |
1683-4720 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124154 |
| citation_txt |
Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками / Я.В. Гончаренко, Ю.І. Жихарєва, М.В. Працьовитий // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2013. — Т. 26. — С. 46-57. — Бібліогр.: 16 назв. — укр. |
| work_keys_str_mv |
AT gončarenkoâv vlastivostírozpodíluvipadkovoípídsumiznakododatnogorâdulûrotaznezaležnimidodankami AT žiharêvaûí vlastivostírozpodíluvipadkovoípídsumiznakododatnogorâdulûrotaznezaležnimidodankami AT pracʹovitiimv vlastivostírozpodíluvipadkovoípídsumiznakododatnogorâdulûrotaznezaležnimidodankami AT gončarenkoâv cvoistvaraspredeleniâslučainoipodsummyznakopoložitelʹnogorâdalûrotasnezavisimymislagaemymi AT žiharêvaûí cvoistvaraspredeleniâslučainoipodsummyznakopoložitelʹnogorâdalûrotasnezavisimymislagaemymi AT pracʹovitiimv cvoistvaraspredeleniâslučainoipodsummyznakopoložitelʹnogorâdalûrotasnezavisimymislagaemymi AT gončarenkoâv propertiesofdistributionofrandomincompletesumofgivenpositivelurothserieswithindependentterms AT žiharêvaûí propertiesofdistributionofrandomincompletesumofgivenpositivelurothserieswithindependentterms AT pracʹovitiimv propertiesofdistributionofrandomincompletesumofgivenpositivelurothserieswithindependentterms |
| first_indexed |
2025-12-07T18:12:31Z |
| last_indexed |
2025-12-07T18:12:31Z |
| _version_ |
1850874161979719680 |