On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains

In this article we deal with a sequence of integral functionals defined on weighted Sobolev spaces associated with a sequence of n-dimensional domains. For the given functionals we consider variational problems with sets of constraints of an integral kind. We establish sufficient conditions of conve...

Full description

Saved in:
Bibliographic Details
Published in:Труды Института прикладной математики и механики
Date:2013
Main Author: Rudakova, O.A.
Language:English
Published: Інститут прикладної математики і механіки НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/124166
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains / O.A. Rudakova // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2013. — Т. 26. — С. 172-180. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124166
record_format dspace
spelling Rudakova, O.A.
2017-09-21T16:11:23Z
2017-09-21T16:11:23Z
2013
On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains / O.A. Rudakova // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2013. — Т. 26. — С. 172-180. — Бібліогр.: 14 назв. — англ.
1683-4720
https://nasplib.isofts.kiev.ua/handle/123456789/124166
517.9
In this article we deal with a sequence of integral functionals defined on weighted Sobolev spaces associated with a sequence of n-dimensional domains. For the given functionals we consider variational problems with sets of constraints of an integral kind. We establish sufficient conditions of convergence of minimizers and minimum values of the variational problems under consideration.
В настоящей статье для последовательности интегральных функционалов, определенных на весовых пространствах Соболева, связанных с последовательностью n-мерных областей, рассмотрены вариационные задачи с множествами ограничений интегрального вида. Установлены достаточные условия сходимости минимизантов и минимальных значений рассматриваемых вариационных задач.
Для послiдовностi iнтегральних функцiоналiв, визначених на вагових просторах Соболєва, пов’язаних з послiдовнiстю n-вимiрних областей, розглянуто варiацiйнi задачi з множинами обмежень iнтегрального вигляду. Встановлено достатнi умови збiжностi мiнiмiзантiв i мiнiмальних значень розглянутих варiацiйних задач.
en
Інститут прикладної математики і механіки НАН України
Труды Института прикладной математики и механики
On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
О сходимости решений вариационных задач с интегральными ограничениями и вырождением в переменных областях
Про збiжнiсть розв’язкiв варiацiйних задач з iнтегральними обмеженнями i виродженням в змiнних областях
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
spellingShingle On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
Rudakova, O.A.
title_short On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
title_full On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
title_fullStr On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
title_full_unstemmed On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
title_sort on the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains
author Rudakova, O.A.
author_facet Rudakova, O.A.
publishDate 2013
language English
container_title Труды Института прикладной математики и механики
publisher Інститут прикладної математики і механіки НАН України
title_alt О сходимости решений вариационных задач с интегральными ограничениями и вырождением в переменных областях
Про збiжнiсть розв’язкiв варiацiйних задач з iнтегральними обмеженнями i виродженням в змiнних областях
description In this article we deal with a sequence of integral functionals defined on weighted Sobolev spaces associated with a sequence of n-dimensional domains. For the given functionals we consider variational problems with sets of constraints of an integral kind. We establish sufficient conditions of convergence of minimizers and minimum values of the variational problems under consideration. В настоящей статье для последовательности интегральных функционалов, определенных на весовых пространствах Соболева, связанных с последовательностью n-мерных областей, рассмотрены вариационные задачи с множествами ограничений интегрального вида. Установлены достаточные условия сходимости минимизантов и минимальных значений рассматриваемых вариационных задач. Для послiдовностi iнтегральних функцiоналiв, визначених на вагових просторах Соболєва, пов’язаних з послiдовнiстю n-вимiрних областей, розглянуто варiацiйнi задачi з множинами обмежень iнтегрального вигляду. Встановлено достатнi умови збiжностi мiнiмiзантiв i мiнiмальних значень розглянутих варiацiйних задач.
issn 1683-4720
url https://nasplib.isofts.kiev.ua/handle/123456789/124166
citation_txt On the convergence of solutions of the variational problems with integral constraints and degeneration in variable domains / O.A. Rudakova // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2013. — Т. 26. — С. 172-180. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT rudakovaoa ontheconvergenceofsolutionsofthevariationalproblemswithintegralconstraintsanddegenerationinvariabledomains
AT rudakovaoa oshodimostirešeniivariacionnyhzadačsintegralʹnymiograničeniâmiivyroždeniemvperemennyhoblastâh
AT rudakovaoa prozbižnistʹrozvâzkivvariaciinihzadačzintegralʹnimiobmežennâmiivirodžennâmvzminnihoblastâh
first_indexed 2025-11-24T16:07:11Z
last_indexed 2025-11-24T16:07:11Z
_version_ 1850482485826158592
fulltext ISSN 1683-4720 Труды ИПММ НАН Украины. 2013. Том 26 UDK 517.9 c©2013. O.A. Rudakova ON THE CONVERGENCE OF SOLUTIONS OF THE VARIATIONAL PROBLEMS WITH INTEGRAL CONSTRAINTS AND DEGENERATION IN VARIABLE DOMAINS In this article we deal with a sequence of integral functionals defined on weighted Sobolev spaces associated with a sequence of n-dimensional domains. For the given functionals we consider variational problems with sets of constraints of an integral kind. We establish sufficient conditions of convergence of minimizers and minimum values of the variational problems under consideration. Keywords: varying weighted Sobolev spaces, variational problem, integral functional, degeneration, integral constraint, Γ-convergence. 1. Introduction. In this article for a sequence of integral functionals defined on varying weighted Sobolev spaces we consider variational problems with sets of constraints of an integral kind. The strong connectedness of the given weighted Sobolev spaces with a "limit" weighted Sobolev space and the Γ-convergence of the involved integral functionals are the main conditions under which we establish the convergence of the minimizers and minimum values of the given variational problems. The role of the strong connectedness of the corresponding spaces in the study of the homogenization of boundary value problems and variational problems in variable domains (particularly, in strongly perforated domains) is well known (see for instance [7-12]). The notion of the strong connectedness used in the present work was introduced and studied in [11]. The Γ-convergence is a special kind of the convergence introduced by E. De Giorgi in the seventies of last century to propose a framework for the study of the asymptotic behaviour of families of minimum problems. Its first definition as well as the main properties were presented in [5]. There are many works devoted to the Γ-convergence of functionals including integral functionals with degenerate integrands and variable domains of definitions (see for instance [1-6], [8], [9] and [11-13] and the bibliography in [1], [2]). We note that the effectiveness of the Γ-convergence in the study of the homogenization of variational problems is connected with the possibility of obtaining converging subsequences from sequences of minimizers of minimum problems. 2. Preliminaries. Let n ∈ N, n > 2, and let Ω be a bounded domain of Rn. Let p ∈ (1, n), and let ν be a nonnegative function on Ω with the properties: ν > 0 almost everywhere in Ω and ν ∈ L1 loc(Ω), ( 1 ν )1/(p−1) ∈ L1 loc(Ω). (1) We denote by Lp(ν,Ω) the set of all measurable functions u : Ω → R such that the 172 On the convergence of solutions of the variational problems with integral constraints function ν|u|p is summable in Ω. Lp(ν, Ω) is a Banach space with the norm ‖u‖Lp(ν,Ω) = (∫ Ω ν|u|p dx )1/p . Note that by virtue of Young’s inequality and the second inclusion of (1) we have Lp(ν,Ω) ⊂ L1 loc(Ω). We denote by W 1,p(ν, Ω) the set of all functions u ∈ Lp(ν, Ω) such that for every i ∈ {1, . . . , n} there exists the weak derivative Diu, Diu ∈ Lp(ν, Ω). W 1,p(ν, Ω) is a reflexive Banach space with the norm ‖u‖1,p,ν = (∫ Ω ν|u|p dx + n∑ i=1 ∫ Ω ν|Diu|p dx )1/p . Due to the first inclusion of (1) we have C∞ 0 (Ω) ⊂ W 1,p(ν, Ω). We denote by ◦ W 1,p(ν, Ω) the closure of the set C∞ 0 (Ω) in W 1,p(ν,Ω). Next, let {Ωs} be a sequence of domains of Rn which are contained in Ω. By analogy with the spaces introduced above we define the functional spaces corres- ponding to the domains Ωs. Let s ∈ N. We denote by Lp(ν,Ωs) the set of all measurable functions u : Ωs → R such that the function ν|u|p is summable in Ωs. Lp(ν, Ωs) is a Banach space with the norm ‖u‖Lp(ν,Ωs) = (∫ Ωs ν|u|p dx )1/p . By virtue of Young’s inequality and the second inclusion of (1) we have Lp(ν,Ωs) ⊂ L1 loc(Ωs). We denote by W 1,p(ν,Ωs) the set of all functions u ∈ Lp(ν, Ωs) such that for every i ∈ {1, . . . , n} there exists the weak derivative Diu, Diu ∈ Lp(ν, Ωs). W 1,p(ν, Ωs) is a Banach space with the norm ‖u‖1,p,ν,s = (∫ Ωs ν|u|p dx + n∑ i=1 ∫ Ωs ν|Diu|p dx )1/p . We denote by C̃∞ 0 (Ωs) the set of all restrictions on Ωs of functions from C∞ 0 (Ω). Due to the first inclusion of (1) we have C̃∞ 0 (Ωs) ⊂ W 1,p(ν,Ωs). We denote by W̃ 1,p 0 (ν, Ωs) the closure of the set C̃∞ 0 (Ωs) in W 1,p(ν, Ωs). We observe that if u ∈ ◦ W 1,p(ν, Ω) and s ∈ N, then u|Ωs ∈ W̃ 1,p 0 (ν, Ωs). Definition 1. If s ∈ N, then qs : ◦ W 1,p(ν,Ω) → W̃ 1,p 0 (ν,Ωs) is the mapping such that for every function u ∈ ◦ W 1,p(ν, Ω), qsu = u|Ωs . Definition 2.We say that the sequence of the spaces W̃ 1,p 0 (ν, Ωs) is strongly connected with the space ◦ W 1,p(ν, Ω) if there exists a sequence of linear continuous operators ls : W̃ 1,p 0 (ν, Ωs) → ◦ W 1,p(ν, Ω) such that: 173 O.A. Rudakova (i) the sequence of the norms ‖ls‖ is bounded; (ii) for every s ∈ N and for every u ∈ W̃ 1,p 0 (ν, Ωs) we have qs(lsu) = u a. e. in Ωs. Proposition 1. Suppose that the embedding of ◦ W 1,p(ν,Ω) into Lp(ν,Ω) is compact, and the sequence of the spaces W̃ 1,p 0 (ν, Ωs) is strongly connected with the space ◦ W 1,p(ν,Ω). Let for every s ∈ N, us ∈ W̃ 1,p 0 (ν,Ωs), and let the sequence of the norms ‖us‖1,p,ν,s be bounded. Then there exist an increasing sequence {sj} ⊂ N and a function u ∈ ◦ W 1,p(ν, Ω) such that lim j→∞ ‖usj − qsju‖Lp(ν,Ωsj ) = 0. The proof of the proposition is simple (see [11]). Definition 3. Let for every s ∈ N, Is be a functional on W̃ 1,p 0 (ν, Ωs), and let I be a functional on ◦ W 1,p(ν, Ω). We say that the sequence {Is} Γ-converges to the functional I if the following conditions are satisfied: (i) for every function u ∈ ◦ W 1,p(ν, Ω) there exists a sequence ws ∈ W̃ 1,p 0 (ν,Ωs) such that lim s→∞ ‖ws − qsu‖Lp(ν,Ωs) = 0 and lim s→∞ Is(ws) = I(u); (ii) for every function u ∈ ◦ W 1,p(ν, Ω) and for every sequence us ∈ W̃ 1,p 0 (ν, Ωs) such that lim s→∞ ‖us − qsu‖Lp(ν,Ωs) = 0 we have lim inf s→∞ Is(us) > I(u). 3. Main result. Let c1, c2 > 0, and let for every s ∈ N, ψs ∈ L1(Ωs) and ψs > 0 in Ωs. We shall assume that the sequence of the norms ‖ψs‖L1(Ωs) is bounded. (2) Let fs : Ωs × Rn → R, s ∈ N, be a sequence of functions such that: for every s ∈ N and for every ξ ∈ Rn the function fs(·, ξ) is measurable in Ωs; (3) for every s ∈ N and for almost every x ∈ Ωs the function fs(x, ·) is convex in Rn; (4){ for every s ∈ N, for almost every x ∈ Ωs and for every ξ ∈ Rn, c1ν(x)|ξ|p − ψs(x) 6 fs(x, ξ) 6 c2ν(x)|ξ|p + ψs(x). (5) From (3)-(5) it follows that for every s ∈ N, fs is a Carathéodory function and if s ∈ N and u ∈ W̃ 1,p 0 (ν,Ωs), the function fs(x,∇u) is summable in Ωs. For every s ∈ N we define the functional Js : W̃ 1,p 0 (ν,Ωs) → R by Js(u) = ∫ Ωs fs(x,∇u) dx, u ∈ W̃ 1,p 0 (ν, Ωs). Next, let c3, c4 > 0, and let ψ be a function in L1(Ω) such that ψ > 0 in Ω. Let g : Ω× R→ R be a function such that: for every η ∈ R the function g(·, η) is measurable in Ω; (6) 174 On the convergence of solutions of the variational problems with integral constraints for almost every x ∈ Ω the function g(x, ·) is strictly convex in R; (7) { for almost every x ∈ Ω and for every η ∈ R, c3ν(x)|η|p − ψ(x) 6 g(x, η) 6 c4ν(x)|η|p + ψ(x). (8) From (6)-(8) it follows that g is a Carathéodory function and if s ∈ N and u ∈ W̃ 1,p 0 (ν, Ωs), the function g(x, u) is summable in Ωs. Moreover, for every u ∈ ◦ W 1,p(ν,Ω), the function g(x, u) is summable in Ω. For every s ∈ N we define the functional Gs : W̃ 1,p 0 (ν, Ωs) → R by Gs(u) = ∫ Ωs g(x, u) dx, u ∈ W̃ 1,p 0 (ν, Ωs). We observe that by virtue of (2), (4), (5) and (7), (8) for every s ∈ N the functional Js + Gs is weakly lower semicontinuous on W̃ 1,p 0 (ν, Ωs), strictly convex and there exist c′, c′′, c′′′ > 0 such that for every s ∈ N and u ∈ W̃ 1,p 0 (ν, Ωs), c′‖u‖p 1,p,ν,s − c′′′ 6 (Js + Gs)(u) 6 c′′‖u‖p 1,p,ν,s + c′′′. (9) In view of known results on the existence of the minimizers of functionals (see for instance [14]), these properties of the functionals Js +Gs imply that the next assertion holds true: { if s ∈ N and U is a nonempty convex and closed set in W̃ 1,p 0 (ν, Ωs), there exists a unique function u ∈ U minimizing the functional Js + Gs on U. (10) Further, let c > 0, b ∈ L1(Ω), b > 0 in Ω, and let ϕ : Ω× R→ R be a Carathéodory function such that: for almost every x ∈ Ω the function ϕ(x, ·) is convex in R; (11) for almost every x ∈ Ω ϕ(x, 0) = 0; (12) { for almost every x ∈ Ω and for every η ∈ R, |ϕ(x, η)| 6 cν(x)|η|p + b(x). (13) For every s ∈ N we define the functional Φs : W̃ 1,p 0 (ν,Ωs) → R by Φs(u) = ∫ Ωs ϕ(x, u) dx, u ∈ W̃ 1,p 0 (ν, Ωs). Using (8) and (13) along with Egoroff’s theorem, we establish the following fact: { for every v ∈ ◦ W 1,p(ν, Ω) and for every sequence vs ∈ W̃ 1,p 0 (ν, Ωs) such that ‖vs − qsv‖Lp(ν,Ωs) → 0 we have Gs(vs)−Gs(qsv) → 0 and Φs(vs)− Φs(qsv) → 0. (14) 175 O.A. Rudakova For every s ∈ N we define Vs = {u ∈ W̃ 1,p 0 (ν, Ωs) : Φs(u) 6 1}. Due to (12) for every s ∈ N the set Vs is nonempty. For every function σ ∈ L∞(Ω) we define the functionals Gσ, Φσ : ◦ W 1,p(ν, Ω) → R by Gσ(u) = ∫ Ω σg(x, u) dx, Φσ(u) = ∫ Ω σϕ(x, u) dx, u ∈ ◦ W 1,p(ν,Ω), and we set V σ = {u ∈ ◦ W 1,p(ν,Ω) : Φσ(u) 6 1}. In view of (11) for every s ∈ N the set Vs is convex. This fact and (10) imply that for every s ∈ N there exists a unique function us ∈ Vs minimizing the functional Js + Gs on Vs. Theorem 1. Suppose that the following conditions are satisfied: (∗1) the embedding of ◦ W 1,p(ν, Ω) into Lp(ν,Ω) is compact; (∗2) the sequence of the spaces W̃ 1,p 0 (ν,Ωs) is strongly connected with ◦ W 1,p(ν, Ω); (∗3) there exists a positive bounded measurable function σ on Ω such that for every open cube Q ⊂ Ω, lim s→∞meas(Q ∩ Ωs) = ∫ Q σ dx; (∗4) the sequence {Js} Γ-converges to a functional J : ◦ W 1,p(ν, Ω) → R. Assume that for every s ∈ N, us is the function in Vs minimizing the functional Js+Gs on Vs. Then there exists a function u ∈ V σ such that the following assertions hold true: the function u is a unique minimizer of the functional J + Gσ on V σ; (15) lim s→∞ ‖us − qsu‖Lp(ν,Ωs) = 0; (16) lim s→∞(Js + Gs)(us) = (J + Gσ)(u). (17) Proof. We observe that in view of condition (∗3) for every function v ∈ ◦ W 1,p(ν, Ω) Gs(qsv) → Gσ(v) and Φs(qsv) → Φσ(v). This and (14) imply that { for every v ∈ ◦ W 1,p(ν, Ω) and for every sequence vs ∈ W̃ 1,p 0 (ν, Ωs) such that ‖vs − qsv‖Lp(ν,Ωs) → 0 we have Gs(vs) → Gσ(v) and Φs(vs) → Φσ(v). (18) For every s ∈ N we set Is = Js + Gs and I = J + Gσ. From condition (∗4) and assertion of (18) it follows that the sequence {Is} Г-converges to the functional I. (19) 176 On the convergence of solutions of the variational problems with integral constraints Moreover, taking into account that for every s ∈ N the function us minimizes the functional Js + Gs on Vs and using (9) we obtain that the sequence of the norms ‖us‖1,p,ν,s is bounded. (20) This fact along with conditions (∗1), (∗2) and Proposition 1 implies that there exist an increasing sequence {sj} ⊂ N and a function u ∈ ◦ W 1,p(ν, Ω) such that lim j→∞ ‖usj − qsju‖Lp(ν,Ωsj ) = 0. (21) Now we define the sequence {ūs} by ūs = { us if s = sj for some j ∈ N, qsu if s 6= sj for every j ∈ N. It is evident that for every s ∈ N, ūs ∈ W̃ 1,p 0 (ν, Ωs). Due to (21) we have lim s→∞ ‖ūs − qsu‖Lp(ν,Ωs) = 0. Then by virtue of assertions (18) and (19), lim s→∞Φs(ūs) = Φσ(u), (22) lim inf s→∞ Is(ūs) > I(u). (23) Due to (22) lim j→∞ Φsj (usj ) = Φσ(u). Taking into account that for every s ∈ N, Φs(us) 6 1, from the latter equality we derive that Φσ(u) 6 1. Consequently, u ∈ V σ. Moreover, from (23) we obtain lim inf j→∞ Isj (usj ) > I(u). (24) Further, we fix v ∈ V σ. Let us show that lim sup s→∞ Is(us) 6 I(v). (25) From (19) it follows that there exists a sequence vs ∈ W̃ 1,p 0 (ν,Ωs) such that lim s→∞ ‖vs − qsv‖Lp(ν,Ωs) = 0, (26) lim s→∞ Is(vs) = I(v). (27) For every s ∈ N we set τs = (1 + |Φs(vs) − Φσ(v)|)−1. From (18) and (26) it follows that lim s→∞ τs = 1. (28) 177 O.A. Rudakova For every s ∈ N we define ws = τsvs. Clearly, ws ∈ W̃ 1,p 0 (ν,Ωs), s ∈ N. Moreover, using (11) and (12), and the inclusion v ∈ V σ, we establish that for every s ∈ N, Φs(ws) 6 τsΦs(vs) 6 τs(1 + |Φs(vs)− Φσ(v)|) 6 1. This implies that for every s ∈ N, ws ∈ Vs. Then, taking into account that for every s ∈ N the function us minimizes the functional Is on Vs, we get ∀ s ∈ N, Is(us) 6 Is(ws). (29) Using (4), (5), (7) and (8), we obtain that for every s ∈ N, Is(ws) 6 τsIs(vs) + (1− τs)(‖ψs‖L1(Ωs) + ‖ψ‖L1(Ω)). This along with (2) and (27)-(29) implies that inequality (25) is valid. From this inequality and inequality (24) we infer that the function u minimizes the functional I on V σ. We observe that, due to (4), (7), condition (∗4) and the fact that the function σ is positive, the functional I is strictly convex. Therefore, since the set V σ is convex, the function u is the unique minimizer of the functional I on V σ. Thus, assertion (15) holds true. Next, let us show that assertion (16) holds true. For every s ∈ N we define αs = ‖us−qsu‖Lp(ν,Ωs). Suppose that the sequence {αs} does not converge to zero. Then there exist ε > 0 and an increasing sequence {s̄k} ⊂ N such that ∀ k ∈ N, αs̄k > ε. (30) Taking into account (20) and conditions (∗1) and (∗2), we establish that there exist an increasing sequence {s̃j} ⊂ {s̄k} and a function w ∈ ◦ W 1,p(ν, Ω) such that lim j→∞ ‖us̃j − qs̃jw‖Lp(ν,Ωs̃j ) = 0. (31) Thus, by analogy with the above result for the function u, we obtain that w ∈ V σ and w minimizes the functional I on V σ. This fact along with the uniqueness of the minimizer of the functional I on V σ allows us to deduce that w = u a. e. in Ω. Hence, by (31), αs̃j → 0. However, this contradicts (30). The contradiction obtained proves that αs → 0. Thus, assertion (16) holds true. Now, from (19) and (16) we get lim inf s→∞ Is(us) > I(u). This and (25), with v = u, imply that assertion (17) holds true. The theorem is proved. We note that the convergence of minimizers and minimum values of variational problems with certain pointwise constraints for a sequence of functionals like Js + Gs was studied in [12]. Moreover, in [12] a rather extensive review of the works related to the topic is contained. 178 On the convergence of solutions of the variational problems with integral constraints In the nondegenerate case, the questions concerning convergence of minimizers of variational problems with general sets of constraints, and in particular sets of constraints of an integral kind, for integral functionals defined on varying Sobolev spaces were studied in [8]. In this connection see also Subsections 1.4 and 2.5 of [10] where convergenсe of solutions of variational inequalities with different kinds of sets of constraints was investigated. 1. Braides A., Defranceschi A. Homogenization of multiple integrals // Oxford Lect. Ser. Math. and Appl. – New York: Clarendon Press, 1998. – 12. – 298 p. 2. Dal Maso G. An introduction to Γ-convergence. – Boston: Birkhäuser, 1993. – 337 p. 3. De Arcangelis R., Donato P. Homogenization in weighted Sobolev spaces // Ricerche Mat. – 1985. – 34. – P. 289-308. 4. De Arcangelis R. Compactness and convergence of minimum points for a class of nonlinear nonequi- coercive functionals // Nonlinear Anal., Theory Methods Appl. – 1990. – 15, № 4. – P. 363-380. 5. De Giorgi E., Franzoni T. Su un tipo di convergenza variazionale // Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8). – 1975. – 58, № 6. – P. 842-850. 6. Carbone L., Sbordone C. Some properties of Γ-limits of integral functionals // Ann. Mat. Pura Appl. (4). – 1979. – 122. – P. 1-60. 7. Khruslov E.Ya. Asymptotic behavior of the solutions of the second boundary value problem in the case of the refinement of the boundary of the domain // Mat. Sb.– 1978. – 106, № 4. – P. 604-621. 8. Kovalevskii A.A. On the connectedness of subsets of Sobolev spaces and the Γ-convergence of functionals with varying domain of definition // Nelinejnye granichnye zadachi. – 1989. – 1. – P. 48-54. (in Russian) 9. Kovalevskii A.A. Some problems connected with the problem of averaging variational problems for functionals with a variable domain // Current Analysis and its Applications, Naukova Dumka, Kiev. – 1989. – P. 62-70. (in Russian) 10. Kovalevsky A.A. G-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain // Russian Acad. Sci. Izv. Math. – 1995. – 44, № 3. – P. 431-460. 11. Kovalevskii A.A., Rudakova O.A. On the strong connectedness of weighted Sobolev spaces and the compactness of sequences of their elements // Tr. Inst. Prikl. Mat. Mekh. Nats. Akad. Nauk Ukrainy. – 2006. – 12. – P. 85-99. (in Russian) 12. Kovalevsky A.A., Rudakova O.A. Variational problems with pointwise constraints and degeneration in variable domains // Differ. Eqns. Appl. – 2009. – 1, № 4. – P. 517-559. 13. Kovalevsky A.A., Rudakova O.A. Γ-convergence of integral functionals with degenerate integrands in periodically perforated domains // Tr. Inst. Prikl. Mat. Mekh. Nats. Akad. Nauk Ukrainy. – 2009. – 19. – P. 101-109. 14. Vainberg M.M. Variational method and method of monotone operators in the theory of nonlinear equations. – Halsted Press, New York-Toronto, 1973. – 356 p. О.А. Рудакова О сходимости решений вариационных задач с интегральными ограничениями и вы- рождением в переменных областях. В настоящей статье для последовательности интегральных функционалов, определенных на весо- вых пространствах Соболева, связанных с последовательностью n-мерных областей, рассмотрены вариационные задачи с множествами ограничений интегрального вида. Установлены достаточные условия сходимости минимизантов и минимальных значений рассматриваемых вариационных за- дач. Ключевые слова: переменные весовые пространства Соболева, вариационная задача, инте- 179 O.A. Rudakova гральный функционал, вырождение, интегральное ограничение, Γ-сходимость. О.А. Рудакова Про збiжнiсть розв’язкiв варiацiйних задач з iнтегральними обмеженнями i вироджен- ням в змiнних областях. Для послiдовностi iнтегральних функцiоналiв, визначених на вагових просторах Соболєва, пов’я- заних з послiдовнiстю n-вимiрних областей, розглянуто варiацiйнi задачi з множинами обмежень iнтегрального вигляду. Встановлено достатнi умови збiжностi мiнiмiзантiв i мiнiмальних значень розглянутих варiацiйних задач. Ключовi слова: змiннi ваговi простори Соболєва, варiацiйна задача, iнтегральний функцiонал, виродження, iнтегральне обмеження, Γ-збiжнiсть. Institute of Applied Mathematics and Mechanics of NAS of Ukraine rudakova@iamm.ac.donetsk.ua Received 03.06.13 180