О множествах, на которых функции с нулевыми интегралами по шарам допускают произвольное поведение
Доказано, что произвольная интегрируемая в квадрате функция, определенная на замкнутом множестве диаметра ≤ 2r отличном от шара радиуса r, продолжается до функции с нулевыми интегралами по шарам радиуса r, определенной на всем Rⁿ. Если внутренность множества содержит две точки, удаленные на расстоян...
Gespeichert in:
| Veröffentlicht in: | Труды Института прикладной математики и механики |
|---|---|
| Datum: | 2016 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/124242 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | О множествах, на которых функции с нулевыми интегралами по шарам допускают произвольное поведение / Д.А. Зарайский // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2016. — Т. 30. — С. 46-52. — Бібліогр.: 11 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Доказано, что произвольная интегрируемая в квадрате функция, определенная на замкнутом множестве диаметра ≤ 2r отличном от шара радиуса r, продолжается до функции с нулевыми интегралами по шарам радиуса r, определенной на всем Rⁿ. Если внутренность множества содержит две точки, удаленные на расстояние 2r, такое продолжение может не иметь места. Получен аналогичный результат для функций с нулевыми интегралами по сферам радиуса r.
It is proved that an arbitrary square-integrable function defined on an closed set of diameter ≤ 2r, which is distinct from ball of radius r, continues to locally square-integrable function with zero integrals over balls of radius r defined on the whole Rⁿ. If internal of the set contains two point at the distance 2r such continuation may not occur. An analogous result for functions with zero integrals over spheres of radius r is obtained.
|
|---|---|
| ISSN: | 1683-4720 |