C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds
We obtain the applications of approach [2, 5, 6] to the high order regularity of solutions to the parabolic Cauchy problem with globally non-Lipschitz coeffcients growing at the in nity of a noncompact manifold. In comparison to [2], where the semigroup properties were studied by application of nonl...
Збережено в:
| Дата: | 2008 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124261 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds / A.Val. Antoniouk // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 174-194. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124261 |
|---|---|
| record_format |
dspace |
| spelling |
Antoniouk, A.Val. 2017-09-23T09:44:51Z 2017-09-23T09:44:51Z 2008 C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds / A.Val. Antoniouk // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 174-194. — Бібліогр.: 13 назв. — англ. 0236-0497 MSC (2000): 35K05, 47J20, 53B21, 58J35, 60H07, 60H10,60H30 https://nasplib.isofts.kiev.ua/handle/123456789/124261 We obtain the applications of approach [2, 5, 6] to the high order regularity of solutions to the parabolic Cauchy problem with globally non-Lipschitz coeffcients growing at the in nity of a noncompact manifold. In comparison to [2], where the semigroup properties were studied by application of nonlinear estimates on variations with use of local arguments of [11], i.e. for manifolds with the C² metric distance function, the developed below approach works for the general noncompact manifold with possible non-unique geodesics between distant points. en Інститут прикладної математики і механіки НАН України C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds |
| spellingShingle |
C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds Antoniouk, A.Val. |
| title_short |
C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds |
| title_full |
C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds |
| title_fullStr |
C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds |
| title_full_unstemmed |
C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds |
| title_sort |
c∞-regularity of non-lipshitz heat semigroups on noncompact riemannian manifolds |
| author |
Antoniouk, A.Val. |
| author_facet |
Antoniouk, A.Val. |
| publishDate |
2008 |
| language |
English |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We obtain the applications of approach [2, 5, 6] to the high order regularity of solutions to the parabolic Cauchy problem with globally non-Lipschitz coeffcients growing at the in nity of a noncompact manifold. In comparison to [2], where the semigroup properties were studied by application of nonlinear estimates on variations with use of local arguments of [11], i.e. for manifolds with the C² metric distance function, the developed below approach works for the general noncompact manifold with possible non-unique geodesics between distant points.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124261 |
| citation_txt |
C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds / A.Val. Antoniouk // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 174-194. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT antonioukaval cregularityofnonlipshitzheatsemigroupsonnoncompactriemannianmanifolds |
| first_indexed |
2025-12-07T16:58:47Z |
| last_indexed |
2025-12-07T16:58:47Z |
| _version_ |
1850869523428671488 |