Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and...
Saved in:
| Date: | 2008 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124265 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124265 |
|---|---|
| record_format |
dspace |
| spelling |
Sidenko, N.R. 2017-09-23T09:45:12Z 2017-09-23T09:45:12Z 2008 Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ. 0236-0497 MSC (2000): 35L70, 35B27 https://nasplib.isofts.kiev.ua/handle/123456789/124265 In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and the D.Cioranescu-F.Murat hypothesis for the description of the domain milling. en Інститут прикладної математики і механіки НАН України Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
| spellingShingle |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation Sidenko, N.R. |
| title_short |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
| title_full |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
| title_fullStr |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
| title_full_unstemmed |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
| title_sort |
averaging of the dirichlet problem for the spectral hyperbolic quasilinear equation |
| author |
Sidenko, N.R. |
| author_facet |
Sidenko, N.R. |
| publishDate |
2008 |
| language |
English |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and the D.Cioranescu-F.Murat hypothesis for the description of the domain milling.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124265 |
| citation_txt |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT sidenkonr averagingofthedirichletproblemforthespectralhyperbolicquasilinearequation |
| first_indexed |
2025-12-07T15:17:38Z |
| last_indexed |
2025-12-07T15:17:38Z |
| _version_ |
1850863159491952640 |