Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения
В.И. Арнольдом в [1] сформулирована "гипотеза трансверсальности" о том, что в "естественном" семействе вещественных симметрических эллиптических операторов, определенных на компактной области, те операторы, у которых выделенное собственное значение имеет фиксированную кратность,...
Saved in:
| Published in: | Нелинейные граничные задачи |
|---|---|
| Date: | 2010 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124280 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения / А.A Бондарь // Нелинейные граничные задачи: сб. науч. тр. — 2010. — Т. 20. — С. 15-27. — Бібліогр.: 11 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124280 |
|---|---|
| record_format |
dspace |
| spelling |
Бондарь, А.A 2017-09-23T14:39:26Z 2017-09-23T14:39:26Z 2010 Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения / А.A Бондарь // Нелинейные граничные задачи: сб. науч. тр. — 2010. — Т. 20. — С. 15-27. — Бібліогр.: 11 назв. — рос. 0236-0497 MSC (2000): 35R30; 35K65; 45D05 https://nasplib.isofts.kiev.ua/handle/123456789/124280 В.И. Арнольдом в [1] сформулирована "гипотеза трансверсальности" о том, что в "естественном" семействе вещественных симметрических эллиптических операторов, определенных на компактной области, те операторы, у которых выделенное собственное значение имеет фиксированную кратность, образуют банахово гладкое подмногообразие конечной коразмерности. Им же была получена предполагаемая формула коразмерности, зависящая только от кратности собственного значения. Достаточные условия выполнения гипотезы были получены D. Lupo, A.M. Micheletti [2] (для семейства операторов Лапласа на переменной компактной области определения) и Я.М. Дымарским [3] (для семейства операторов вида лапласиан плюс потенциал с переменным потенциалом). Нами будет рассмотрено семейство комплексных несимметрических эллиптических операторов второго порядка, определенных на компактной области, у которых фиксирована кратность выделенного собственного значения. Для семейства получены достаточные условия справедливости гипотезы Арнольда. ru Інститут прикладної математики і механіки НАН України Нелинейные граничные задачи Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения Elliptic operators manifold with fixed multilicity of assigned eigenvalue Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения |
| spellingShingle |
Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения Бондарь, А.A |
| title_short |
Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения |
| title_full |
Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения |
| title_fullStr |
Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения |
| title_full_unstemmed |
Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения |
| title_sort |
многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения |
| author |
Бондарь, А.A |
| author_facet |
Бондарь, А.A |
| publishDate |
2010 |
| language |
Russian |
| container_title |
Нелинейные граничные задачи |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| title_alt |
Elliptic operators manifold with fixed multilicity of assigned eigenvalue |
| description |
В.И. Арнольдом в [1] сформулирована "гипотеза трансверсальности" о том, что в "естественном" семействе вещественных симметрических эллиптических операторов, определенных на компактной области, те операторы, у которых выделенное собственное значение имеет фиксированную кратность, образуют банахово гладкое подмногообразие конечной коразмерности. Им же была получена предполагаемая формула коразмерности, зависящая только от кратности собственного значения. Достаточные условия выполнения гипотезы были получены D. Lupo, A.M. Micheletti [2] (для семейства операторов Лапласа на переменной компактной области определения) и Я.М. Дымарским [3] (для семейства операторов вида лапласиан плюс потенциал с переменным потенциалом). Нами будет рассмотрено семейство комплексных несимметрических эллиптических операторов второго порядка, определенных на компактной области, у которых фиксирована кратность выделенного собственного значения. Для семейства получены достаточные условия справедливости гипотезы Арнольда.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124280 |
| citation_txt |
Многообразие эллиптических операторов с фиксированной кратностью выделенного собственного значения / А.A Бондарь // Нелинейные граничные задачи: сб. науч. тр. — 2010. — Т. 20. — С. 15-27. — Бібліогр.: 11 назв. — рос. |
| work_keys_str_mv |
AT bondarʹaa mnogoobrazieélliptičeskihoperatorovsfiksirovannoikratnostʹûvydelennogosobstvennogoznačeniâ AT bondarʹaa ellipticoperatorsmanifoldwithfixedmultilicityofassignedeigenvalue |
| first_indexed |
2025-12-07T19:31:46Z |
| last_indexed |
2025-12-07T19:31:46Z |
| _version_ |
1850879148466110464 |