Power geometry in nonlinear partial differential equations

Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2008
1. Verfasser: Bruno, A.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124295
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124295
record_format dspace
spelling Bruno, A.D.
2017-09-23T16:47:37Z
2017-09-23T16:47:37Z
2008
Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ.
1810-3200
2000 MSC. 200134, 200135
https://nasplib.isofts.kiev.ua/handle/123456789/124295
Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions.
The work was supported by RFBR, Grant 08-01-00082.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Power geometry in nonlinear partial differential equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Power geometry in nonlinear partial differential equations
spellingShingle Power geometry in nonlinear partial differential equations
Bruno, A.D.
title_short Power geometry in nonlinear partial differential equations
title_full Power geometry in nonlinear partial differential equations
title_fullStr Power geometry in nonlinear partial differential equations
title_full_unstemmed Power geometry in nonlinear partial differential equations
title_sort power geometry in nonlinear partial differential equations
author Bruno, A.D.
author_facet Bruno, A.D.
publishDate 2008
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124295
citation_txt Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT brunoad powergeometryinnonlinearpartialdifferentialequations
first_indexed 2025-12-07T13:10:59Z
last_indexed 2025-12-07T13:10:59Z
_version_ 1850855192021434368