Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Kor...
Saved in:
| Published in: | Український математичний вісник |
|---|---|
| Date: | 2008 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут прикладної математики і механіки НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124298 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order / A.V. Faminskii, I.Yu. Bashlykova // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 83-98. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Korteweg–de Vries, the Korteweg–de Vries–Burgers and the Zakharov–Kuznetsov equations.
|
|---|---|
| ISSN: | 1810-3200 |