Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order

Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Kor...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний вісник
Date:2008
Main Authors: Faminskii, A.V., Bashlykova, I.Yu.
Format: Article
Language:Russian
Published: Інститут прикладної математики і механіки НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/124298
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order / A.V. Faminskii, I.Yu. Bashlykova // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 83-98. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Korteweg–de Vries, the Korteweg–de Vries–Burgers and the Zakharov–Kuznetsov equations.
ISSN:1810-3200