Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order

Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Kor...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2008
Автори: Faminskii, A.V., Bashlykova, I.Yu.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/124298
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order / A.V. Faminskii, I.Yu. Bashlykova // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 83-98. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124298
record_format dspace
spelling Faminskii, A.V.
Bashlykova, I.Yu.
2017-09-23T16:51:12Z
2017-09-23T16:51:12Z
2008
Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order / A.V. Faminskii, I.Yu. Bashlykova // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 83-98. — Бібліогр.: 16 назв. — англ.
1810-3200
2000 MSC. 35Q53, 35M20.
https://nasplib.isofts.kiev.ua/handle/123456789/124298
Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Korteweg–de Vries, the Korteweg–de Vries–Burgers and the Zakharov–Kuznetsov equations.
The work was supported by RFBR grant 06-01-00253
ru
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
spellingShingle Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
Faminskii, A.V.
Bashlykova, I.Yu.
title_short Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
title_full Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
title_fullStr Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
title_full_unstemmed Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
title_sort weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order
author Faminskii, A.V.
Bashlykova, I.Yu.
author_facet Faminskii, A.V.
Bashlykova, I.Yu.
publishDate 2008
language Russian
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Korteweg–de Vries, the Korteweg–de Vries–Burgers and the Zakharov–Kuznetsov equations.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124298
citation_txt Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order / A.V. Faminskii, I.Yu. Bashlykova // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 83-98. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT faminskiiav weaksolutionstooneinitialboundaryvalueproblemwiththreeboundaryconditionsforquasilinearevolutionequationsofthethirdorder
AT bashlykovaiyu weaksolutionstooneinitialboundaryvalueproblemwiththreeboundaryconditionsforquasilinearevolutionequationsofthethirdorder
first_indexed 2025-12-07T15:28:44Z
last_indexed 2025-12-07T15:28:44Z
_version_ 1850863858030215168