Optimal discretization for ill-posed integral equations with finitely smoothing operators
A new approach to the approximate solution of Fredholm integral equations of the first kind with finitely smoothing operators is worked out. It is established that on wide classes of such equations this approach allows to achieve the given level of accuracy at the minimal expense of the discrete inf...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2008 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124348 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Optimal discretization for ill-posed integral equations with finitely smoothing operators / S.G. Solodky // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 382-393. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124348 |
|---|---|
| record_format |
dspace |
| spelling |
Solodky, S.G. 2017-09-23T19:29:28Z 2017-09-23T19:29:28Z 2008 Optimal discretization for ill-posed integral equations with finitely smoothing operators / S.G. Solodky // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 382-393. — Бібліогр.: 11 назв. — англ. 1810-3200 2000 MSC. 65J20, 47A52. https://nasplib.isofts.kiev.ua/handle/123456789/124348 A new approach to the approximate solution of Fredholm integral equations of the first kind with finitely smoothing operators is worked out. It is established that on wide classes of such equations this approach allows to achieve the given level of accuracy at the minimal expense of the discrete information. en Інститут прикладної математики і механіки НАН України Український математичний вісник Optimal discretization for ill-posed integral equations with finitely smoothing operators Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Optimal discretization for ill-posed integral equations with finitely smoothing operators |
| spellingShingle |
Optimal discretization for ill-posed integral equations with finitely smoothing operators Solodky, S.G. |
| title_short |
Optimal discretization for ill-posed integral equations with finitely smoothing operators |
| title_full |
Optimal discretization for ill-posed integral equations with finitely smoothing operators |
| title_fullStr |
Optimal discretization for ill-posed integral equations with finitely smoothing operators |
| title_full_unstemmed |
Optimal discretization for ill-posed integral equations with finitely smoothing operators |
| title_sort |
optimal discretization for ill-posed integral equations with finitely smoothing operators |
| author |
Solodky, S.G. |
| author_facet |
Solodky, S.G. |
| publishDate |
2008 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A new approach to the approximate solution of Fredholm integral equations of the first kind with finitely smoothing operators is worked out. It is established that on wide classes of such equations this approach allows to achieve the given level of accuracy at the minimal expense of the discrete information.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124348 |
| citation_txt |
Optimal discretization for ill-posed integral equations with finitely smoothing operators / S.G. Solodky // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 382-393. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT solodkysg optimaldiscretizationforillposedintegralequationswithfinitelysmoothingoperators |
| first_indexed |
2025-12-07T20:14:18Z |
| last_indexed |
2025-12-07T20:14:18Z |
| _version_ |
1850881823837519872 |