Expansions of solutions to the equation P₁² by algorithms of power geometry

Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2009
Hauptverfasser: Bruno, A.D., Kudryashov, N.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124362
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Expansions of solutions to the equation P₁² by algorithms of power geometry / A.D. Bruno, N.A. Kudryashov // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 311-337. — Бібліогр.: 48 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124362
record_format dspace
spelling Bruno, A.D.
Kudryashov, N.A.
2017-09-24T13:01:38Z
2017-09-24T13:01:38Z
2009
Expansions of solutions to the equation P₁² by algorithms of power geometry / A.D. Bruno, N.A. Kudryashov // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 311-337. — Бібліогр.: 48 назв. — англ.
1810-3200
https://nasplib.isofts.kiev.ua/handle/123456789/124362
2000 MSC. 34E05, 41A58, 41A60.
Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of solutions to the equation P₁² at the points z = 0 and z = ∞. Two levels of the exponential additions to the expansions of solutions near z = ∞ are computed. We also describe an algorithm of computation of a basis of a minimal lattice containing a given set.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Expansions of solutions to the equation P₁² by algorithms of power geometry
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Expansions of solutions to the equation P₁² by algorithms of power geometry
spellingShingle Expansions of solutions to the equation P₁² by algorithms of power geometry
Bruno, A.D.
Kudryashov, N.A.
title_short Expansions of solutions to the equation P₁² by algorithms of power geometry
title_full Expansions of solutions to the equation P₁² by algorithms of power geometry
title_fullStr Expansions of solutions to the equation P₁² by algorithms of power geometry
title_full_unstemmed Expansions of solutions to the equation P₁² by algorithms of power geometry
title_sort expansions of solutions to the equation p₁² by algorithms of power geometry
author Bruno, A.D.
Kudryashov, N.A.
author_facet Bruno, A.D.
Kudryashov, N.A.
publishDate 2009
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of solutions to the equation P₁² at the points z = 0 and z = ∞. Two levels of the exponential additions to the expansions of solutions near z = ∞ are computed. We also describe an algorithm of computation of a basis of a minimal lattice containing a given set.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124362
citation_txt Expansions of solutions to the equation P₁² by algorithms of power geometry / A.D. Bruno, N.A. Kudryashov // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 311-337. — Бібліогр.: 48 назв. — англ.
work_keys_str_mv AT brunoad expansionsofsolutionstotheequationp12byalgorithmsofpowergeometry
AT kudryashovna expansionsofsolutionstotheequationp12byalgorithmsofpowergeometry
first_indexed 2025-12-07T20:39:45Z
last_indexed 2025-12-07T20:39:45Z
_version_ 1850883425945255936