The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem

In the present work symmetrized sequential type decomposition scheme of the fourth degree precision for the solution of inhomogeneous evolution problem is constructed. The fourth degree precision is reached by introducing the complex parameter α = 1/2 ± i(1/2√3) and by the approximation of the semig...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2009
Автори: Rogava, J., Tsiklauri, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/124365
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem / J. Rogava, M. Tsiklauri // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 385-399. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124365
record_format dspace
spelling Rogava, J.
Tsiklauri, M.
2017-09-24T13:05:03Z
2017-09-24T13:05:03Z
2009
The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem / J. Rogava, M. Tsiklauri // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 385-399. — Бібліогр.: 14 назв. — англ.
1810-3200
2000 MSC. 65M12, 65M15, 65M55.
https://nasplib.isofts.kiev.ua/handle/123456789/124365
In the present work symmetrized sequential type decomposition scheme of the fourth degree precision for the solution of inhomogeneous evolution problem is constructed. The fourth degree precision is reached by introducing the complex parameter α = 1/2 ± i(1/2√3) and by the approximation of the semigroup through the rational approximation. For the considered scheme the explicit a priori estimation is obtained.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
spellingShingle The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
Rogava, J.
Tsiklauri, M.
title_short The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
title_full The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
title_fullStr The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
title_full_unstemmed The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
title_sort fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem
author Rogava, J.
Tsiklauri, M.
author_facet Rogava, J.
Tsiklauri, M.
publishDate 2009
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description In the present work symmetrized sequential type decomposition scheme of the fourth degree precision for the solution of inhomogeneous evolution problem is constructed. The fourth degree precision is reached by introducing the complex parameter α = 1/2 ± i(1/2√3) and by the approximation of the semigroup through the rational approximation. For the considered scheme the explicit a priori estimation is obtained.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124365
citation_txt The fourth order of accuracy sequential type rational splitting of inhomogeneous evolution problem / J. Rogava, M. Tsiklauri // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 385-399. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT rogavaj thefourthorderofaccuracysequentialtyperationalsplittingofinhomogeneousevolutionproblem
AT tsiklaurim thefourthorderofaccuracysequentialtyperationalsplittingofinhomogeneousevolutionproblem
AT rogavaj fourthorderofaccuracysequentialtyperationalsplittingofinhomogeneousevolutionproblem
AT tsiklaurim fourthorderofaccuracysequentialtyperationalsplittingofinhomogeneousevolutionproblem
first_indexed 2025-12-07T16:06:24Z
last_indexed 2025-12-07T16:06:24Z
_version_ 1850866227897958400