Application of the Thomas precession to the deformations of a rotating disk

Within the framework of Special Relativity, the recent paper [1] describes the shrinking determined by the rotation of a planar disk, and an apparent paradox emerging from the anisotropic outcoming contraction. In this paper, using the Thomas precession, we obtain the same result in a different way....

Full description

Saved in:
Bibliographic Details
Published in:Український математичний вісник
Date:2009
Main Authors: Celakoska, E.G., Trecevski, K., Balan, V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2009
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/124367
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Application of the Thomas precession to the deformations of a rotating disk / E.G. Celakoska, K. Trecevski, V. Balan // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 429-435. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124367
record_format dspace
spelling Celakoska, E.G.
Trecevski, K.
Balan, V.
2017-09-24T13:35:32Z
2017-09-24T13:35:32Z
2009
Application of the Thomas precession to the deformations of a rotating disk / E.G. Celakoska, K. Trecevski, V. Balan // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 429-435. — Бібліогр.: 9 назв. — англ.
1810-3200
2000 MSC. 83A05, 83B05.
https://nasplib.isofts.kiev.ua/handle/123456789/124367
Within the framework of Special Relativity, the recent paper [1] describes the shrinking determined by the rotation of a planar disk, and an apparent paradox emerging from the anisotropic outcoming contraction. In this paper, using the Thomas precession, we obtain the same result in a different way.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Application of the Thomas precession to the deformations of a rotating disk
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Application of the Thomas precession to the deformations of a rotating disk
spellingShingle Application of the Thomas precession to the deformations of a rotating disk
Celakoska, E.G.
Trecevski, K.
Balan, V.
title_short Application of the Thomas precession to the deformations of a rotating disk
title_full Application of the Thomas precession to the deformations of a rotating disk
title_fullStr Application of the Thomas precession to the deformations of a rotating disk
title_full_unstemmed Application of the Thomas precession to the deformations of a rotating disk
title_sort application of the thomas precession to the deformations of a rotating disk
author Celakoska, E.G.
Trecevski, K.
Balan, V.
author_facet Celakoska, E.G.
Trecevski, K.
Balan, V.
publishDate 2009
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description Within the framework of Special Relativity, the recent paper [1] describes the shrinking determined by the rotation of a planar disk, and an apparent paradox emerging from the anisotropic outcoming contraction. In this paper, using the Thomas precession, we obtain the same result in a different way.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124367
citation_txt Application of the Thomas precession to the deformations of a rotating disk / E.G. Celakoska, K. Trecevski, V. Balan // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 429-435. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT celakoskaeg applicationofthethomasprecessiontothedeformationsofarotatingdisk
AT trecevskik applicationofthethomasprecessiontothedeformationsofarotatingdisk
AT balanv applicationofthethomasprecessiontothedeformationsofarotatingdisk
first_indexed 2025-12-01T07:26:02Z
last_indexed 2025-12-01T07:26:02Z
_version_ 1850859512039211008