Fundamental solutions of boundary problems and resolvents of differential operators

The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2009
1. Verfasser: Mogilevskii, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124370
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124370
record_format dspace
spelling Mogilevskii, V.
2017-09-24T13:39:06Z
2017-09-24T13:39:06Z
2009
Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ.
1810-3200
2000 MSC. 34B05, 34B27, 34B40, 47E05.
https://nasplib.isofts.kiev.ua/handle/123456789/124370
The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Fundamental solutions of boundary problems and resolvents of differential operators
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Fundamental solutions of boundary problems and resolvents of differential operators
spellingShingle Fundamental solutions of boundary problems and resolvents of differential operators
Mogilevskii, V.
title_short Fundamental solutions of boundary problems and resolvents of differential operators
title_full Fundamental solutions of boundary problems and resolvents of differential operators
title_fullStr Fundamental solutions of boundary problems and resolvents of differential operators
title_full_unstemmed Fundamental solutions of boundary problems and resolvents of differential operators
title_sort fundamental solutions of boundary problems and resolvents of differential operators
author Mogilevskii, V.
author_facet Mogilevskii, V.
publishDate 2009
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124370
citation_txt Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT mogilevskiiv fundamentalsolutionsofboundaryproblemsandresolventsofdifferentialoperators
first_indexed 2025-12-07T17:29:08Z
last_indexed 2025-12-07T17:29:08Z
_version_ 1850871432435728384