Balleans of topological groups
A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are coun...
Gespeichert in:
| Veröffentlicht in: | Український математичний вісник |
|---|---|
| Datum: | 2011 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2011
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/124412 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Balleans of topological groups / S. Hernández, I. V. Protasov // Український математичний вісник. — 2011. — Т. 8, № 1. — С. 87-100. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124412 |
|---|---|
| record_format |
dspace |
| spelling |
Hernández, S. Protasov, I.V. 2017-09-25T18:30:40Z 2017-09-25T18:30:40Z 2011 Balleans of topological groups / S. Hernández, I. V. Protasov // Український математичний вісник. — 2011. — Т. 8, № 1. — С. 87-100. — Бібліогр.: 13 назв. — англ. 1810-3200 2010 MSC. 22A05, 22A10, 54E15, 54A25, 54D35. https://nasplib.isofts.kiev.ua/handle/123456789/124412 A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are counterparts of the left and right uniformities of G. We study the relationships between the uniform and ballean structures on G, describe all topological groups admitting a metric compatible both with uniform and ballean structures, and construct a group analogue of Higson’s compactification of a proper metric space. en Інститут прикладної математики і механіки НАН України Український математичний вісник Balleans of topological groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Balleans of topological groups |
| spellingShingle |
Balleans of topological groups Hernández, S. Protasov, I.V. |
| title_short |
Balleans of topological groups |
| title_full |
Balleans of topological groups |
| title_fullStr |
Balleans of topological groups |
| title_full_unstemmed |
Balleans of topological groups |
| title_sort |
balleans of topological groups |
| author |
Hernández, S. Protasov, I.V. |
| author_facet |
Hernández, S. Protasov, I.V. |
| publishDate |
2011 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are counterparts of the left and right uniformities of G. We study the relationships between the uniform and ballean structures on G, describe all topological groups admitting a metric compatible both with uniform and ballean structures, and construct a group analogue of Higson’s compactification of a proper metric space.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124412 |
| citation_txt |
Balleans of topological groups / S. Hernández, I. V. Protasov // Український математичний вісник. — 2011. — Т. 8, № 1. — С. 87-100. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT hernandezs balleansoftopologicalgroups AT protasoviv balleansoftopologicalgroups |
| first_indexed |
2025-12-07T18:52:18Z |
| last_indexed |
2025-12-07T18:52:18Z |
| _version_ |
1850876664901271552 |