Balleans of topological groups

A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are coun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2011
Hauptverfasser: Hernández, S., Protasov, I.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124412
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Balleans of topological groups / S. Hernández, I. V. Protasov // Український математичний вісник. — 2011. — Т. 8, № 1. — С. 87-100. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124412
record_format dspace
spelling Hernández, S.
Protasov, I.V.
2017-09-25T18:30:40Z
2017-09-25T18:30:40Z
2011
Balleans of topological groups / S. Hernández, I. V. Protasov // Український математичний вісник. — 2011. — Т. 8, № 1. — С. 87-100. — Бібліогр.: 13 назв. — англ.
1810-3200
2010 MSC. 22A05, 22A10, 54E15, 54A25, 54D35.
https://nasplib.isofts.kiev.ua/handle/123456789/124412
A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are counterparts of the left and right uniformities of G. We study the relationships between the uniform and ballean structures on G, describe all topological groups admitting a metric compatible both with uniform and ballean structures, and construct a group analogue of Higson’s compactification of a proper metric space.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Balleans of topological groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Balleans of topological groups
spellingShingle Balleans of topological groups
Hernández, S.
Protasov, I.V.
title_short Balleans of topological groups
title_full Balleans of topological groups
title_fullStr Balleans of topological groups
title_full_unstemmed Balleans of topological groups
title_sort balleans of topological groups
author Hernández, S.
Protasov, I.V.
author_facet Hernández, S.
Protasov, I.V.
publishDate 2011
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are counterparts of the left and right uniformities of G. We study the relationships between the uniform and ballean structures on G, describe all topological groups admitting a metric compatible both with uniform and ballean structures, and construct a group analogue of Higson’s compactification of a proper metric space.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124412
citation_txt Balleans of topological groups / S. Hernández, I. V. Protasov // Український математичний вісник. — 2011. — Т. 8, № 1. — С. 87-100. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT hernandezs balleansoftopologicalgroups
AT protasoviv balleansoftopologicalgroups
first_indexed 2025-12-07T18:52:18Z
last_indexed 2025-12-07T18:52:18Z
_version_ 1850876664901271552