A class of periodic integral equations with numerical solving by a fully discrete projection method
For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretizatio...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2014 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124468 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124468 |
|---|---|
| record_format |
dspace |
| spelling |
Solodky, S.G. Semenova, E.V. 2017-09-26T16:24:05Z 2017-09-26T16:24:05Z 2014 A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ. 1810-3200 2010 MSC. 65R20, 65R30, 47G30. https://nasplib.isofts.kiev.ua/handle/123456789/124468 For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretization a balancing principle is used. en Інститут прикладної математики і механіки НАН України Український математичний вісник A class of periodic integral equations with numerical solving by a fully discrete projection method Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A class of periodic integral equations with numerical solving by a fully discrete projection method |
| spellingShingle |
A class of periodic integral equations with numerical solving by a fully discrete projection method Solodky, S.G. Semenova, E.V. |
| title_short |
A class of periodic integral equations with numerical solving by a fully discrete projection method |
| title_full |
A class of periodic integral equations with numerical solving by a fully discrete projection method |
| title_fullStr |
A class of periodic integral equations with numerical solving by a fully discrete projection method |
| title_full_unstemmed |
A class of periodic integral equations with numerical solving by a fully discrete projection method |
| title_sort |
class of periodic integral equations with numerical solving by a fully discrete projection method |
| author |
Solodky, S.G. Semenova, E.V. |
| author_facet |
Solodky, S.G. Semenova, E.V. |
| publishDate |
2014 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretization a balancing principle is used.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124468 |
| citation_txt |
A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT solodkysg aclassofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod AT semenovaev aclassofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod AT solodkysg classofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod AT semenovaev classofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod |
| first_indexed |
2025-11-27T10:26:50Z |
| last_indexed |
2025-11-27T10:26:50Z |
| _version_ |
1850852087699603456 |