A class of periodic integral equations with numerical solving by a fully discrete projection method

For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretizatio...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2014
Автори: Solodky, S.G., Semenova, E.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/124468
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124468
record_format dspace
spelling Solodky, S.G.
Semenova, E.V.
2017-09-26T16:24:05Z
2017-09-26T16:24:05Z
2014
A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ.
1810-3200
2010 MSC. 65R20, 65R30, 47G30.
https://nasplib.isofts.kiev.ua/handle/123456789/124468
For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretization a balancing principle is used.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
A class of periodic integral equations with numerical solving by a fully discrete projection method
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A class of periodic integral equations with numerical solving by a fully discrete projection method
spellingShingle A class of periodic integral equations with numerical solving by a fully discrete projection method
Solodky, S.G.
Semenova, E.V.
title_short A class of periodic integral equations with numerical solving by a fully discrete projection method
title_full A class of periodic integral equations with numerical solving by a fully discrete projection method
title_fullStr A class of periodic integral equations with numerical solving by a fully discrete projection method
title_full_unstemmed A class of periodic integral equations with numerical solving by a fully discrete projection method
title_sort class of periodic integral equations with numerical solving by a fully discrete projection method
author Solodky, S.G.
Semenova, E.V.
author_facet Solodky, S.G.
Semenova, E.V.
publishDate 2014
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretization a balancing principle is used.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124468
citation_txt A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT solodkysg aclassofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
AT semenovaev aclassofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
AT solodkysg classofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
AT semenovaev classofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
first_indexed 2025-11-27T10:26:50Z
last_indexed 2025-11-27T10:26:50Z
_version_ 1850852087699603456