To the spectral theory of the Bessel operator on finite interval and half-line

The minimal and maximal operators generated by the Bessel differential expression on the finite interval and a half-line are studied. All non-negative self-adjoint extensions of the minimal operator are described. Also we obtain a description of the domain of the Friedrichs extension of the minimal...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2015
Автори: Ananieva, A.Yu., Budyika, V.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/124494
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:To the spectral theory of the Bessel operator on finite interval and half-line / A.Yu. Ananieva, V.S. Budyika // Український математичний вісник. — 2015. — Т. 12, № 2. — С. 160-189. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124494
record_format dspace
spelling Ananieva, A.Yu.
Budyika, V.S.
2017-09-27T20:13:11Z
2017-09-27T20:13:11Z
2015
To the spectral theory of the Bessel operator on finite interval and half-line / A.Yu. Ananieva, V.S. Budyika // Український математичний вісник. — 2015. — Т. 12, № 2. — С. 160-189. — Бібліогр.: 21 назв. — англ.
1810-3200
2010 MSC. 34L10.
https://nasplib.isofts.kiev.ua/handle/123456789/124494
The minimal and maximal operators generated by the Bessel differential expression on the finite interval and a half-line are studied. All non-negative self-adjoint extensions of the minimal operator are described. Also we obtain a description of the domain of the Friedrichs extension of the minimal operator in the framework of extension theory of symmetric operators by applying the technique of boundary triplets and the corresponding Weyl functions, and by using the quadratic form method.
The authors express their gratitude to Prof. M. Malamud for posing the problem and permanent attention to the work.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
To the spectral theory of the Bessel operator on finite interval and half-line
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title To the spectral theory of the Bessel operator on finite interval and half-line
spellingShingle To the spectral theory of the Bessel operator on finite interval and half-line
Ananieva, A.Yu.
Budyika, V.S.
title_short To the spectral theory of the Bessel operator on finite interval and half-line
title_full To the spectral theory of the Bessel operator on finite interval and half-line
title_fullStr To the spectral theory of the Bessel operator on finite interval and half-line
title_full_unstemmed To the spectral theory of the Bessel operator on finite interval and half-line
title_sort to the spectral theory of the bessel operator on finite interval and half-line
author Ananieva, A.Yu.
Budyika, V.S.
author_facet Ananieva, A.Yu.
Budyika, V.S.
publishDate 2015
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description The minimal and maximal operators generated by the Bessel differential expression on the finite interval and a half-line are studied. All non-negative self-adjoint extensions of the minimal operator are described. Also we obtain a description of the domain of the Friedrichs extension of the minimal operator in the framework of extension theory of symmetric operators by applying the technique of boundary triplets and the corresponding Weyl functions, and by using the quadratic form method.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124494
citation_txt To the spectral theory of the Bessel operator on finite interval and half-line / A.Yu. Ananieva, V.S. Budyika // Український математичний вісник. — 2015. — Т. 12, № 2. — С. 160-189. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT ananievaayu tothespectraltheoryofthebesseloperatoronfiniteintervalandhalfline
AT budyikavs tothespectraltheoryofthebesseloperatoronfiniteintervalandhalfline
first_indexed 2025-12-07T18:38:18Z
last_indexed 2025-12-07T18:38:18Z
_version_ 1850875784808366080