On 2-primal Ore extensions
Let R be a ring, be an automorphism of R and δ be a σ-derivation of R. We define a δ property on R. We say that R is a δ-ring if aδ(a) ∊ P(R) implies a ∊ P(R), where P(R) denotes the prime radical of R. We ultimately show the following. Let R be a Noetherian δ-ring, which is also an algebra over Q...
Saved in:
| Published in: | Український математичний вісник |
|---|---|
| Date: | 2007 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124514 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On 2-primal Ore extensions / V.K. Bhat // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 173-179. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Let R be a ring, be an automorphism of R and δ be a σ-derivation of R. We define a δ property on R. We say that R is a δ-ring if aδ(a) ∊ P(R) implies a ∊ P(R), where P(R) denotes the prime radical of R. We ultimately show the following. Let R be a Noetherian δ-ring, which is also an algebra over Q, σ and δ be as usual such that σ(δ(a)) = δ(σ(a)), for all a ∊ R and σ(P) = P, P any minimal prime ideal of R. Then R[x, σ(, δ] is a 2-primal Noetherian ring.
|
|---|---|
| ISSN: | 1810-3200 |