On 2-primal Ore extensions

Let R be a ring, be an automorphism of R and δ be a σ-derivation of R. We define a δ property on R. We say that R is a δ-ring if aδ(a) ∊ P(R) implies a ∊ P(R), where P(R) denotes the prime radical of R. We ultimately show the following. Let R be a Noetherian δ-ring, which is also an algebra over Q...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний вісник
Date:2007
Main Author: Bhat, V.K.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/124514
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On 2-primal Ore extensions / V.K. Bhat // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 173-179. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let R be a ring, be an automorphism of R and δ be a σ-derivation of R. We define a δ property on R. We say that R is a δ-ring if aδ(a) ∊ P(R) implies a ∊ P(R), where P(R) denotes the prime radical of R. We ultimately show the following. Let R be a Noetherian δ-ring, which is also an algebra over Q, σ and δ be as usual such that σ(δ(a)) = δ(σ(a)), for all a ∊ R and σ(P) = P, P any minimal prime ideal of R. Then R[x, σ(, δ] is a 2-primal Noetherian ring.
ISSN:1810-3200