Рациональные аппроксимации и сильная матричная проблема моментов
В этой работе рассматривается сильная усеченная матричная проблема моментов Гамбургера, что означает: индексы k меняются в диапазоне − 2μ− ≤ k ≤ 2μ+, а моменты Sk являются самосопряженными матрицами. Мы находим условия разрешимости и единственности решения этой задачи и даем описание всех решений в...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124518 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Рациональные аппроксимации и сильная матричная проблема моментов / К.К. Симонов // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 235-264. — Бібліогр.: 27 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | В этой работе рассматривается сильная усеченная матричная проблема моментов Гамбургера, что означает: индексы k меняются в диапазоне − 2μ− ≤ k ≤ 2μ+, а моменты Sk являются самосопряженными матрицами. Мы находим условия разрешимости и единственности решения этой задачи и даем описание всех решений в терминах самосопряженных расширений некоторого модельного симметрического оператора. Кроме того, мы строим последовательность двухточечных диагональных аппроксимаций Паде, соответствующих сильной проблеме моментов, и исследуем сходимость этой последовательности. Наконец, мы факторизуем резольвентную матрицу сильной усеченной проблемы моментов.
|
|---|---|
| ISSN: | 1810-3200 |