Discontinuous Birkhoff theorem
A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.
Saved in:
| Published in: | Український математичний вісник |
|---|---|
| Date: | 2007 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124527 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124527 |
|---|---|
| record_format |
dspace |
| spelling |
Petrenko, O. Protasov, I.V. 2017-09-29T05:29:39Z 2017-09-29T05:29:39Z 2007 Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ. 1810-3200 2000 MSC. 37B20, 54C10, 58K15. https://nasplib.isofts.kiev.ua/handle/123456789/124527 A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space. en Інститут прикладної математики і механіки НАН України Український математичний вісник Discontinuous Birkhoff theorem Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Discontinuous Birkhoff theorem |
| spellingShingle |
Discontinuous Birkhoff theorem Petrenko, O. Protasov, I.V. |
| title_short |
Discontinuous Birkhoff theorem |
| title_full |
Discontinuous Birkhoff theorem |
| title_fullStr |
Discontinuous Birkhoff theorem |
| title_full_unstemmed |
Discontinuous Birkhoff theorem |
| title_sort |
discontinuous birkhoff theorem |
| author |
Petrenko, O. Protasov, I.V. |
| author_facet |
Petrenko, O. Protasov, I.V. |
| publishDate |
2007 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124527 |
| citation_txt |
Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ. |
| work_keys_str_mv |
AT petrenkoo discontinuousbirkhofftheorem AT protasoviv discontinuousbirkhofftheorem |
| first_indexed |
2025-12-07T19:54:30Z |
| last_indexed |
2025-12-07T19:54:30Z |
| _version_ |
1850880578400813056 |