Discontinuous Birkhoff theorem

A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.

Saved in:
Bibliographic Details
Published in:Український математичний вісник
Date:2007
Main Authors: Petrenko, O., Protasov, I.V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/124527
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124527
record_format dspace
spelling Petrenko, O.
Protasov, I.V.
2017-09-29T05:29:39Z
2017-09-29T05:29:39Z
2007
Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ.
1810-3200
2000 MSC. 37B20, 54C10, 58K15.
https://nasplib.isofts.kiev.ua/handle/123456789/124527
A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Discontinuous Birkhoff theorem
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Discontinuous Birkhoff theorem
spellingShingle Discontinuous Birkhoff theorem
Petrenko, O.
Protasov, I.V.
title_short Discontinuous Birkhoff theorem
title_full Discontinuous Birkhoff theorem
title_fullStr Discontinuous Birkhoff theorem
title_full_unstemmed Discontinuous Birkhoff theorem
title_sort discontinuous birkhoff theorem
author Petrenko, O.
Protasov, I.V.
author_facet Petrenko, O.
Protasov, I.V.
publishDate 2007
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124527
citation_txt Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT petrenkoo discontinuousbirkhofftheorem
AT protasoviv discontinuousbirkhofftheorem
first_indexed 2025-12-07T19:54:30Z
last_indexed 2025-12-07T19:54:30Z
_version_ 1850880578400813056