Discontinuous Birkhoff theorem
A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.
Saved in:
| Published in: | Український математичний вісник |
|---|---|
| Date: | 2007 |
| Main Authors: | Petrenko, O., Protasov, I.V. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124527 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
τ-Functions, Birkhoff Factorizations and Difference Equations
by: Addabbo, D., et al.
Published: (2019) -
On iteration stability of the Birkhoff center with respect to power 2
by: Vlasenko, I.Yu., et al.
Published: (2006) -
Approach of discontinuous functions by discontinuous splines on trapezes
by: O. M. Lytvyn, et al.
Published: (2011) -
Calculation of DC converters in discontinuous conduction mode using the averaging method based on lagrange theorem
by: Yu. V. Rudenko
Published: (2023) -
Hermite–Birkhoff interpolation polynomial of minimum norm in Hilbert space
by: O. F. Kashpur
Published: (2021)