On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups
A new class of global mixed Abelian groups, called W-groups, is defined. The following isomorphism theorem for commutative modular group algebras of such groups is proved: If G is a p-mixed μ-elementary W-group for some arbitrary ordinal μ, then the F-isomorphism between the group algebras FG and FH...
Saved in:
| Published in: | Український математичний вісник |
|---|---|
| Date: | 2006 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2006
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124555 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups / P. Danchev // Український математичний вісник. — 2006. — Т. 3, № 3. — С. 305-314. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124555 |
|---|---|
| record_format |
dspace |
| spelling |
Danchev, P. 2017-09-29T09:30:55Z 2017-09-29T09:30:55Z 2006 On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups / P. Danchev // Український математичний вісник. — 2006. — Т. 3, № 3. — С. 305-314. — Бібліогр.: 2 назв. — англ. 1810-3200 2000 MSC. 20C07, 16S34, 16U60, 20K21. https://nasplib.isofts.kiev.ua/handle/123456789/124555 A new class of global mixed Abelian groups, called W-groups, is defined. The following isomorphism theorem for commutative modular group algebras of such groups is proved: If G is a p-mixed μ-elementary W-group for some arbitrary ordinal μ, then the F-isomorphism between the group algebras FG and FH of prime characteristic p for any group H implies that G and H are isomorphic. en Інститут прикладної математики і механіки НАН України Український математичний вісник On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups |
| spellingShingle |
On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups Danchev, P. |
| title_short |
On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups |
| title_full |
On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups |
| title_fullStr |
On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups |
| title_full_unstemmed |
On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups |
| title_sort |
on the isomorphic group algebras of isotype subgroups of warfield abelian groups |
| author |
Danchev, P. |
| author_facet |
Danchev, P. |
| publishDate |
2006 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A new class of global mixed Abelian groups, called W-groups, is defined. The following isomorphism theorem for commutative modular group algebras of such groups is proved: If G is a p-mixed μ-elementary W-group for some arbitrary ordinal μ, then the F-isomorphism between the group algebras FG and FH of prime characteristic p for any group H implies that G and H are isomorphic.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124555 |
| citation_txt |
On the Isomorphic Group Algebras of Isotype Subgroups of Warfield Abelian Groups / P. Danchev // Український математичний вісник. — 2006. — Т. 3, № 3. — С. 305-314. — Бібліогр.: 2 назв. — англ. |
| work_keys_str_mv |
AT danchevp ontheisomorphicgroupalgebrasofisotypesubgroupsofwarfieldabeliangroups |
| first_indexed |
2025-12-07T21:08:03Z |
| last_indexed |
2025-12-07T21:08:03Z |
| _version_ |
1850885206419963904 |