Some endpoint inequalities for multilinear integral operators

In this paper, the endpoint estimates for some multilinear operators related to certain fractional singular integral operators are obtained. The operators include Calder´on–Zygmund singular integral operator and fractional integral operator.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2006
1. Verfasser: Liu, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2006
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124565
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Some endpoint inequalities for multilinear integral operators / L. Liu // Український математичний вісник. — 2006. — Т. 3, № 4. — С. 504-519. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124565
record_format dspace
spelling Liu, L.
2017-09-29T10:49:55Z
2017-09-29T10:49:55Z
2006
Some endpoint inequalities for multilinear integral operators / L. Liu // Український математичний вісник. — 2006. — Т. 3, № 4. — С. 504-519. — Бібліогр.: 13 назв. — англ.
1810-3200
2000 MSC. 42B20, 42B25.
https://nasplib.isofts.kiev.ua/handle/123456789/124565
In this paper, the endpoint estimates for some multilinear operators related to certain fractional singular integral operators are obtained. The operators include Calder´on–Zygmund singular integral operator and fractional integral operator.
The author would like to express his deep gratitude to the referee for his valuable comments and suggestions.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Some endpoint inequalities for multilinear integral operators
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Some endpoint inequalities for multilinear integral operators
spellingShingle Some endpoint inequalities for multilinear integral operators
Liu, L.
title_short Some endpoint inequalities for multilinear integral operators
title_full Some endpoint inequalities for multilinear integral operators
title_fullStr Some endpoint inequalities for multilinear integral operators
title_full_unstemmed Some endpoint inequalities for multilinear integral operators
title_sort some endpoint inequalities for multilinear integral operators
author Liu, L.
author_facet Liu, L.
publishDate 2006
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper, the endpoint estimates for some multilinear operators related to certain fractional singular integral operators are obtained. The operators include Calder´on–Zygmund singular integral operator and fractional integral operator.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124565
citation_txt Some endpoint inequalities for multilinear integral operators / L. Liu // Український математичний вісник. — 2006. — Т. 3, № 4. — С. 504-519. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT liul someendpointinequalitiesformultilinearintegraloperators
first_indexed 2025-11-25T22:54:36Z
last_indexed 2025-11-25T22:54:36Z
_version_ 1850575838030856192
fulltext Український математичний вiсник Том 3 (2006), № 4, 504 – 519 Some endpoint inequalities for multilinear integral operators Lanzhe Liu (Presented by V. Ya. Gutlanskii) Abstract. In this paper, the endpoint estimates for some multilinear operators related to certain fractional singular integral operators are obtained. The operators include Calderón–Zygmund singular integral operator and fractional integral operator. 2000 MSC. 42B20, 42B25. Key words and phrases. Multilinear operator, Fractional singular integral operators, BMO space, Hardy space. 1. Introduction Let T be the Calderón–Zygmund singular integral operator, the clas- sical result by Coifman, Rochberg and Weiss (see [6]) states that the com- mutator [b, T ](f) = T (bf) − bT (f) (where b ∈ BMO(Rn)) is bounded on Lp(Rn) for 1 < p < ∞; Chanillo (see [1]) has proved a similar result when T was replaced by the fractional integral operator; in [9], the end- point boundedness of the commutators was obtained. The main purpose of this paper is to establish the endpoint boundedness of some multilin- ear operators related to certain non-convolution type fractional singular integral operators. As an application, the endpoint boundedness of the multilinear operators related to the Calderón–Zygmund singular integral operator and fractional integral operator is obtained. 2. Notations and results Throughout this paper, Q will denote a cube of Rn with sides par- allel to the axes. For a cube Q and a locally integrable function f , let fQ = |Q|−1 ∫ Q f(x) dx and f#(x) = supx∈Q |Q|−1 ∫ Q |f(y) − fQ| dy. For Received 28.03.2005 ISSN 1810 – 3200. c© Iнститут математики НАН України L. Liu 505 a weight function w, f is said to belong to BMO(w) if f# ∈ L∞(w). Set ‖f‖BMO(w) = ‖f#‖L∞(w). Note that BMO(w) = BMO(Rn) if w = 1. A function a is called an H1 atom if there exists a cube Q such that a is supported in Q, ‖a‖L∞(w) ≤ w(Q)−1 and ∫ a(x)dx = 0. It is well known that the Hardy space H1(w) has the atomic decomposition characteriza- tion (see [8, 12]). In this paper, we consider a class of multilinear integral operators defined in the following way. First, given a fixed locally integrable function K(x, y) on Rn × Rn, set TK(f)(x) = ∫ Rn K(x, y)f(y) dy for every bounded and compactly supported function f . We write K ∈ Σδ for δ ≥ 0 if |K(x, y)| ≤ C|x − y|−n+δ and |K(y, x) − K(z, x)| + |K(x, y) − K(x, z)| ≤ C|y − z|ε|x − z|−n−ε+δ and 2|y − z| ≤ |x− z| for a fixed ε > 0. TK is called a fractional singular integral operator if K ∈ Σδ for some δ ≥ 0. Now, let m be a positive integer and A be a function on Rn. Set Rm+1(A; x, y) = A(x) − ∑ |α|≤m 1 α! DαA(y)(x − y)α, and Qm+1(A; x, y) = Rm(A; x, y) − ∑ |α|=m 1 α! DαA(x)(x − y)α. The multilinear operator associated with the fractional singular integral operator TK is defined by TA K(f)(x) = ∫ Rm+1(A; x, y) |x − y|m K(x, y)f(y) dy. We also consider the variant of TA K , which is defined by T̃A K(f)(x) = ∫ Rn Qm+1(A; x, y) |x − y|m K(x, y)f(y) dy. 506 Some endpoint inequalities... Note that T̃A K is closely related to TA K , for Rm+1(A; x, y) − Qm+1(A; x, y) = ∑ |α|=m 1 α! (x − y)α(DαA(x) − DαA(y)). Note that when m = 0, TA K is just the commutators of TK and A(see [1, 6, 9]). It is well known that multilinear operator, as an ex- tension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors(see, e.g. [2–5]). In [7] and [10], the weighted Lp (p > 1) and Hp(0 < p ≤ 1) boundedness of the multilin- ear operator related to the Calderón–Zygmund singular integral operator was obtained; in [2], the weak (H1, L1) boundedness of the multilinear operator related to some singular integral operator was obtained. Now we state our results as following. Theorem 2.1. Let 0 ≤ δ < n and DαA ∈ BMO(Rn) for all α with |α| = m. Suppose TK is bounded from Lp(Rn) to Lq(Rn) for any p, q ∈ (1, +∞) and 1/q = 1/p − δ/n. If K ∈ Σδ, then (a) TA K is bounded from Ln/δ(Rn) to BMO(Rn); (b) T̃A K is bounded from H1(Rn) to Ln/(n−δ)(Rn); (c) TA K is bounded from H1(Rn) to weak Ln/(n−δ)(Rn). Theorem 2.2. Let DαA ∈ BMO(Rn) for all α with |α| = m and w ∈ A1. Suppose TK is bounded on Lp(w) for all 1 < p ≤ ∞. If K ∈ Σ0, then (i) TA K is bounded from L∞(w) to BMO(w); (ii) T̃A K is bounded from H1(w) to L1(w); (iii) TA K is bounded from H1(w) to weak L1(w). Remark 2.1. The boundedness is uniform with respect to K ∈ Σδ and K ∈ Σ0, respectively. In general, TA K is not (H1, Ln/(n−δ)) or (H1(w), L1(w)) bounded. L. Liu 507 3. Proofs of the theorems To prove these theorems, we need the following lemmas. Lemma 3.1 (see [5, p. 448]). Let A be a function on Rn and DαA ∈ Lq(Rn) for |α| = m and some q > n. Then |Rm(A; x, y)| ≤ C|x − y|m ∑ |α|=m ( 1 |Q̃(x, y)| ∫ Q̃(x,y) |DαA(z)|q dz )1/q , where Q̃(x, y) is the cube centered at x and having side length 5 √ n|x−y|. Lemma 3.2 (see [1, p. 8]). Let b ∈ BMO(Rn) and Cb be the commu- tator defined by Cb(f)(x) = ∫ Rn b(x) − b(y) |x − y|n−δ f(y) dy. (1) If 0 ≤ δ < n, 1 < p < ∞ and 1/q = 1/p − δ/n, then Cb is bounded from Lp(Rn) to Lq(Rn) and from H1(Rn) to weak Ln/(n−δ)(Rn). (2) If δ = 0, 1 < p < ∞ and w ∈ A1, then Cb is bounded on Lp(w) and from H1(w) to weak L1(w). Lemma 3.3 (see [5, p. 454(28)] and [12, p. 222]). Let Q be a cube and Ã(x) = A(x) −∑|α|=m 1 α!(D αA)Q̃xα. Then Rm+1(A; x, y) = Rm+1(Ã; x, y). Lemma 3.4 (see [3, p. 695, Lemma 2.2]). Let Q1 and Q2 be the cubes with Q1 ⊂ Q2. Then |bQ1 − bQ2 | ≤ C (1 + |log(|Q1|/|Q2|)|) ‖b‖BMO. Proof of Theorem 2.1. (a) It suffices to prove that there exists a constant CQ such that 1 |Q| ∫ Q |TA K(f)(x) − CQ| dx ≤ C‖f‖Ln/δ holds for any cube Q. Fix a cube Q = Q(x0, d). Let Q̃ = 5 √ nQ and Ã(x) = A(x)−∑|α|=m 1 α!(D αA)Q̃xα, then Rm+1(A; x, y) = Rm+1(Ã; x, y) by induction and Dαà = DαA − (DαA)Q̃ for all α with |α| = m. We write, for f1 = fχQ̃ and f2 = fχRn\Q̃, 508 Some endpoint inequalities... TA K(f)(x) = ∫ Rn Rm+1(Ã; x, y) |x − y|m K(x, y)f(y) dy = ∫ Rn Rm(Ã; x, y) |x − y|m K(x, y)f1(y) dy − ∑ |α|=m 1 α! ∫ Rn K(x, y)(x − y)α |x − y|m DαÃ(y)f1(y) dy + ∫ Rn Rm+1(Ã; x, y) |x − y|m K(x, y)f2(y) dy, then ∣ ∣TA K(f)(x) − T à K(f2)(x0) ∣ ∣ ≤ ∣ ∣ ∣ ∣ TK ( Rm(Ã; x, ·) |x − ·|m f1 ) (x) ∣ ∣ ∣ ∣ + ∑ |α|=m 1 α! ∣ ∣ ∣ ∣ TK ( (x − ·)α |x − ·|m DαÃf1 ) (x) ∣ ∣ ∣ ∣ + ∣ ∣T à K(f2)(x) − T à K(f2)(x0) ∣ ∣ := I(x) + II(x) + III(x), and, thus, 1 |Q| ∫ Q ∣ ∣TA K(f)(x) − T à K(f2)(x0) ∣ ∣ dx ≤ 1 |Q| ∫ Q I(x) dx + 1 |Q| ∫ Q II(x) dx + 1 |Q| ∫ Q III(x) dx := I + II + III. Now, let us estimate I, II and III, respectively. First, we have known (see [12, p. 144]), for b ∈ BMO(Rn), ‖b‖BMO ≈ sup Q ( 1 |Q| ∫ Q |b(y) − bQ|p dy )1/p , then, for x ∈ Q and y ∈ Q̃, using Lemma 3.1 and Lemma 3.4, we get Rm(Ã; x, y) ≤ C|x−y|m ∑ |α|=m [ 1 |Q̃(x, y)| ∫ Q̃(x,y) ( |DαA(z)−(DαA)Q̃(x,y)| + |(DαA)Q̃(x,y) − (DαA)Q̃| )q dz ]1/q L. Liu 509 ≤ C|x − y|m ∑ |α|=m ( ‖DαA‖BMO + 1 + ∣ ∣log |Q(x, y)|/|Q̃| ∣ ∣ ) ≤ C|x − y|m ∑ |α|=m ‖DαA‖BMO, thus, by the (Ln/δ, L∞)-boundedness of TK , we have I ≤ C |Q| ∫ Q ∣ ∣ ∣ ∣ Tδ ( ∑ |α|=m ‖DαA‖BMOf1 ) (x) ∣ ∣ ∣ ∣ dx ≤ C ∑ |α|=m ‖DαA‖BMO‖Tδ(f1)‖L∞ ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖Ln/δ ; Secondly, by the (Lp, Lq)-boundedness of TK for 1/q = 1/p− δ/n, p > 1 and Hölder’s inequality, we gain II ≤ C |Q| ∫ Q |Tδ ( ∑ |α|=m (DαA − (DαA)Q̃)f1 ) (x)| dx ≤ C ∑ |α|=m ( 1 |Q| ∫ Q |Tδ((D αA − (DαA)Q̃)f1)(x)|q dx )1/q ≤ C|Q|−1/q ∑ |α|=m ‖(DαA − (DαA)Q̃)f1‖Lp ≤ C ∑ |α|=m ( 1 |Q| ∫ Q̃ |DαA(y) − (DαA)Q̃|q dy )1/q ‖f‖Ln/δ ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖Ln/δ . To estimate III, we write T à K(f2)(x) − T à K(f2)(x0) = ∫ Rn [ K(x, y) |x − y|m − K(x0, y) |x0 − y|m ] Rm(Ã; x, y)f2(y) dy + ∫ Rn K(x0, y)f2(y) |x0 − y|m [Rm(Ã; x, y) − Rm(Ã; x0, y)] dy 510 Some endpoint inequalities... − ∑ |α|=m 1 α! ∫ Rn ( K(x, y)(x − y)α |x − y|m − K(x0, y)(x0 − y)α |x0 − y|m ) DαÃ(y)f2(y) dy := III1 + III2 + III3; By Lemma 3.1 and Lemma 3.4, we know that, for x ∈ Q and y ∈ 2k+1Q̃ \ 2kQ̃, |Rm(Ã; x, y)| ≤ C|x−y|m ∑ |α|=m (‖DαA‖BMO+|(DαA)Q̃(x,y)−(DαA)Q̃|) ≤ Ck|x − y|m ∑ |α|=m ‖DαA‖BMO. Note that |x− y| ∼ |x0 − y| for x ∈ Q and y ∈ Rn \ Q̃, we obtain, by the condition on K, |III1| ≤ C ∫ Rn ( |x − x0| |x0 − y|m+n+1−δ + |x − x0|ε |x0 − y|m+n+ε−δ ) |Rm(Ã; x, y)||f2(y)| dy ≤ C ∑ |α|=m ‖DαA‖BMO ∞ ∑ k=0 ∫ 2k+1Q̃\2kQ̃ k ( |x − x0| |x0 − y|n+1−δ + |x − x0|ε |x0 − y|n+ε−δ ) |f(y)| dy ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖Ln/δ ∞ ∑ k=1 k(2−k + 2−εk) ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖Ln/δ ; For III2, by the formula (see (39) in [5]): Rm(Ã; x, y) − Rm(Ã; x0, y) = ∑ |β|<m 1 β! Rm−|β|(D βÃ; x, x0)(x − y)β and Lemma 3.1, we have |Rm(Ã; x, y) − Rm(Ã; x0, y)| ≤ C ∑ |β|<m ∑ |α|=m |x − x0|m−|β||x − y||β|‖DαA‖BMO, L. Liu 511 similar to the estimates of III1, we get |III2| ≤ C ∑ |α|=m ‖DαA‖BMO ∞ ∑ k=0 ∫ 2k+1Q̃\2kQ̃ |x − x0| |x0 − y|n+1−δ |f(y)| dy ≤ C‖DαA‖BMO‖f‖Ln/δ ; For III3, by taking r > 1 such that 1/r+δ/n = 1, similar to the estimates of III1, we get |III3| ≤ C ∑ |α|=m ∞ ∑ k=0 ∫ 2k+1Q̃\2kQ̃ ( |x − x0| |x0 − y|n+1−δ + |x − x0|ε |x0 − y|n+ε−δ ) |DαÃ(y)||f(y)| dy ≤C ∑ |α|=m ∞ ∑ k=1 (2−k+2−εk) ( |2kQ̃|−1 ∫ 2kQ̃ |DαA(y)−(DαA)Q̃|r dy )1/r ‖f‖Ln/δ ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖Ln/δ . Thus III ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖Ln/δ . (b) It is only to show that there exists a constant C > 0 such that for every H1-atom a(that is that a satisfies: supp a ⊂ Q = Q(x0, d), ‖a‖L∞ ≤ |Q|−1 and ∫ a(y) dy = 0 (see [8])), the following holds: ‖T̃A K(a)‖Ln/(n−δ) ≤ C. We write ∫ Rn [ T̃A K(a)(x) ]n/n−δ dx = [ ∫ |x−x0|≤2r + ∫ |x−x0|>2r ] [ T̃A K(a)(x) ]n/(n−δ) dx := J + JJ. For J , by the following equality Qm+1(A; x, y) = Rm+1(A; x, y) + ∑ |α|=m 1 α! (x − y)α(DαA(x) − DαA(y)), 512 Some endpoint inequalities... we have, |T̃A K(a)(x)| ≤ |TA K(a)(x)| + C ∑ |α|=m ∫ Rn |DαA(x) − DαA(y)| |x − y|n−δ |a(y)| dy, thus, T̃A K is (Lp, Lq)-bounded by Lemma 3.2 and (a), where 1/q = 1/p− δ/n. We see that J ≤ C‖T̃A K(a)‖n/((n−δ)q) Lq |2Q|1−n/((n−δ)q) ≤ C‖a‖n/(n−δ) Lp |Q|1−n/((n−δ)q) ≤ C. To obtain the estimate of JJ , we denote Ã(x) = A(x) −∑|α|=m 1 α! × (DαA)2Qxα. Then Qm(A; x, y) = Qm(Ã; x, y). We write, by the vanish- ing moment of a, T̃A K(a)(x) = ∫ Rn K(x, y)Rm(A; x, y) |x − y|m a(y)dy − ∑ |α|=m 1 α! ∫ Rn K(x, y)DαÃ(x)(x − y)α |x − y|m a(y) dy = ∫ Rn [ K(x, y) |x − y|m − K(x, x0) |x − x0|m ] Rm(Ã; x, y)a(y) dy + ∫ Rn K(x, x0) |x − x0|m [Rm(Ã; x, y) − Rm(Ã; x, x0)]a(y) dy − ∑ |α|=m 1 α! ∫ Rn [ K(x, y)(x − y)α |x − y|m − K(x, x0)(x − x0) α |x − x0|m ] DαÃ(x)a(y) dy, := JJ1 + JJ2 + JJ3. Now, similar to the proof of III, we obtain, for x ∈ (2Q)c |JJ1| ≤ C ∫ Rn [ |y − x0| |x − y|n+m+1−δ + |y − x0|ε |x − y|n+m+ε−δ ] |Rm(Ã; x, y)||a(y)| dy ≤ C ∑ |α|=m ‖DαA‖BMO(|Q|1/n|x − x0|−n−1+δ + |Q|ε/n|x − x0|−n−ε+δ), |JJ2| ≤ C ∫ Rn |Rm(Ã; x, y) − Rm(Ã; x, x0)||a(y)| |x − y|m+n−δ dy L. Liu 513 ≤ C ∑ |α|=m ‖DαA‖BMO ∫ Rn |x0 − y‖a(y)| |x − x0|n+1−δ dy ≤ C ∑ |α|=m ‖DαA‖BMO|Q|1/n|x − x0|−n−1+δ and |JJ3| ≤ C ∫ Rn |x0 − y| |x − y|n+1−δ ∑ |α|=m |DαÃ(x)||a(y)| dy ≤ C ∑ |α|=m |DαÃ(x)|(|Q|1/n|x − x0|−n−1+δ + |Q|ε/n|x − x0|−n−ε+δ). Thus JJ ≤ ∫ (2Q)c (|JJ1 + JJ2 + JJ3|)n/(n−δ) dx ≤ C ( ∑ |α|=m ‖DαA‖BMO )n/(n−δ) ∞ ∑ k=1 k[2−kn/(n−δ) + 2−knε/(n−δ)] ≤ C. (c) By the following equality Rm+1(A; x, y) = Qm+1(A; x, y) + ∑ |α|=m 1 α! (x − y)α(DαA(x) − DαA(y)), we have |TA K(f)(x)| ≤ |T̃A K(f)(x)| + C ∑ |α|=m ∫ Rn |DαA(x) − DαA(y)| |x − y|n−δ |f(y)| dy, thus, by Lemma 3.2 and (b), we obtain |{x ∈ Rn : |TA K(f)(x)| > λ}| ≤ |{x ∈ Rn : |T̃A K(f)(x)| > λ/2}| + ∣ ∣ ∣ ∣ ∣ { x ∈ Rn : ∑ |α|=m ∫ Rn |DαA(x) − DαA(y)| |x − y|n−δ |f(y)| dy > Cλ }∣ ∣ ∣ ∣ ∣ ≤ C(‖f‖H1/λ)n/(n−δ). This completes the proof of Theorem 2.1. 514 Some endpoint inequalities... Proof of Theorem 2.2. (i) It is only to prove that there exists a constant CQ such that 1 w(Q) ∫ Q |TA K(f)(x) − CQ|w(x) dx ≤ C‖f‖L∞(w) holds for any cube Q. Fix a cube Q = Q(x0, d). Let Q̃ and Ã(x) be the same as the proof of Theorem 2.1. We have, similar to the proof of Theorem 2.1, for f1 = fχQ̃ and f2 = fχRn\Q̃, ∣ ∣TA K(f)(x) − T à K(f2)(x0) ∣ ∣ ≤ ∣ ∣ ∣ ∣ TK ( Rm(Ã; x, ·) |x − ·|m f1 ) (x) ∣ ∣ ∣ ∣ + ∑ |α|=m 1 α! ∣ ∣ ∣ ∣ TK ( (x − ·)α |x − ·|m DαÃf1 ) (x) ∣ ∣ ∣ ∣ + ∣ ∣T à K(f2)(x) − T à K(f2)(x0) ∣ ∣ := I(x) + II(x) + III(x), and, thus, 1 w(Q) ∫ Q ∣ ∣TA K(f)(x) − T à K(f2)(x0) ∣ ∣w(x) dx ≤ 1 w(Q) ∫ Q I(x)w(x) dx + 1 w(Q) ∫ Q II(x)w(x) dx + 1 w(Q) ∫ Q III(x)w(x) dx := I + II + III. First, using Lemma 3.1 and the L∞(w)-boundedness of TK , we have I ≤ C w(Q) ∫ Q ∣ ∣ ∣ ∣ TK ( ∑ |α|=m ‖DαA‖BMOf1 ) (x) ∣ ∣ ∣ ∣ w(x) dx ≤ C ∑ |α|=m ‖DαA‖BMO‖Tf1‖L∞(w) ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖L∞(w); Secondly, since w ∈ A1, w satisfies the reverse of Hölder’s inequality: ( 1 |Q| ∫ Q w(x)q dx )1/q ≤ C |Q| ∫ Q w(x) dx L. Liu 515 for all cube Q and some 1 < q < ∞ (see [12]), thus, taking p > 1 and 1/p+1/p′ = 1, by the Lp(w)-boundedness of TK and Hölder’s inequality, we gain II ≤ C w(Q) ∫ Q ∣ ∣ ∣ ∣ T ( ∑ |α|=m (DαA − (DαA)Q̃)f1 ) (x) ∣ ∣ ∣ ∣ w(x) dx ≤ C ∑ |α|=m ( 1 w(Q) ∫ Q |T ((DαA − (DαA)Q̃)f1)(x)|pw(x)dx )1/p ≤ C ∑ |α|=m ( 1 w(Q) ∫ Q |(DαA(x) − (DαA)Q̃)f1(x)|pw(x) dx )1/p ≤ C ∑ |α|=m w(Q)−1/p ( ∫ Q̃ |DαA(x) − (DαA)Q̃|pq′ dx )1/pq′ × ( ∫ Q̃ w(x)q dx )1/pq ‖f‖L∞(w) ≤ C ∑ |α|=m ( 1 |Q| ∫ Q̃ |DαA(x) − (DαA)Q̃|pq′ dx )1/pq′ × ( 1 |Q| ∫ Q̃ w(x)q dx )1/pq ( |Q| w(Q) )1/p ‖f‖L∞(w) ≤ C ∑ |α|=m ‖DαA‖BMO ( 1 |Q| ∫ Q̃ w(x) dx )1/p ( |Q| w(Q) )1/p ‖f‖L∞(w) ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖L∞(w); For III, similar to the proof of Theorem 2.1, we obtain III ≤ C ∑ |α|=m ‖DαA‖BMO 1 w(Q) × ∫ Q ∞ ∑ k=0 ∫ 2k+1Q̃\2kQ̃ k ( |x − x0| |x0 − y|n+1 + |x − x0|ε |x0 − y|n+ε ) |f(y)| dy w(x) dx 516 Some endpoint inequalities... + C ∑ |α|=m 1 w(Q) ∫ Q ∞ ∑ k=0 ∫ 2k+1Q̃\2kQ̃ ( |x − x0| |x0 − y|n+1 + |x − x0|ε |x0 − y|n+ε ) × |DαÃ(y)||f(y)| dy w(x) dx ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖L∞(w) ∞ ∑ k=1 k(2−k + 2−kε) ≤ C ∑ |α|=m ‖DαA‖BMO‖f‖L∞(w). (ii) It suffices to show that there exists a constant C > 0 such that for every H1(w)-atom a (that is that a satisfy: supp a ⊂ Q = Q(x0, r), ‖a‖L∞(w) ≤ w(Q)−1 and ∫ a(y)dy = 0 (see [8])), we have ‖T̃A K(a)‖L1(w) ≤ C. We write ∫ Rn T̃A K(a)(x)w(x) dx = [ ∫ 2Q + ∫ (2Q)c ] T̃A K(a)(x)w(x) dx := J + JJ. For J , similar to the proof of Theorem 2.1, we get |T̃A K(a)(x)| ≤ |TA(a)(x)| + C ∑ |α|=m ∫ Rn |DαA(x) − DαA(y)| |x − y|n |a(y)| dy, thus, T̃A K is Lp(w)-bounded by Lemma 3.2 and (i). We see that J ≤ C‖T̃A K(a)‖L∞(w)w(2Q) ≤ C‖a‖L∞(w)w(Q) ≤ C; For JJ , notice that if w ∈ A1, then w(Q2) |Q2| |Q1| w(Q1) ≤ C for all cubes Q1, Q2 with Q1 ⊂ Q2. Thus, by Hölder’s inequality and the reverse of Hölder’s inequality for w ∈ A1 and some 1 < q < ∞, taking p > 1 and 1/p+1/p′ = 1, similarly, we obtain JJ ≤ C ∑ |α|=m ‖DαA‖BMO ∞ ∑ k=1 (2−k + 2−εk) ( |Q| w(Q) w(2k+1Q) |2k+1Q| ) + C ∑ |α|=m ∞ ∑ k=1 (2−k + 2−εk) |Q| w(Q) ( 1 |2k+1Q| ∫ 2k+1Q |DαÃ(x)|p dx )1/p L. Liu 517 × ( 1 |2k+1Q| ∫ 2k+1Q w(x)p′ dx )1/p′ ≤ C ∑ |α|=m ‖DαA‖BMO ∞ ∑ k=1 k(2−k + 2−εk) ( w(2k+1Q) |2k+1Q| |Q| w(Q) ) ≤ C. (iii) Similarly, we know |TA K(f)(x)| ≤ |T̃A(f)(x)| + C ∑ |α|=m ∫ Rn |DαA(x) − DαA(y)| |x − y|n |f(y)| dy, by Lemma 3.2 and (ii), we obtain w({x ∈ Rn : |TA K(f)(x)| > λ}) ≤ w({x ∈ Rn : |T̃A K(f)(x)| > λ/2}) + w ({ x ∈ Rn : ∑ |α|=m ∫ Rn |DαA(x) − DαA(y)| |x − y|n |f(y)| dy > Cλ }) ≤ C‖f‖H1(w)/λ. This completes the proof of Theorem 2.2. 4. Applications In this section we shall apply the Theorem 2.1 and 2.2 to some partic- ular operators such as the Calderón–Zygmund singular integral operator and fractional integral operator. Aplication 1 (Calderón–Zygmund singular integral operator). Let T be the Calderón–Zygmund operator defined by (see [8, 12]) T (f)(x) = ∫ K(x, y)f(y) dy, the multilinear operator related to T is defined by TA(f)(x) = ∫ Rm+1(A; x, y) |x − y|m K(x, y)f(y) dy. Then it is easily to see that TK satisfies the conditions in Theorem 2.2, thus that TA is bounded from L∞(w) to BMO(w) and from H1(w) to weak L1(w) and that T̃A is bounded from H1(w) to L1(w) for w ∈ A1 and DαA ∈ BMO(Rn) with |α| = m. 518 Some endpoint inequalities... Aplication 2 (Fractional integral operator with rough kernel). For 0 ≤ δ < n, let Tδ be the fractional integral operator with rough kernel defined by (see [7, 9, 10]) Tδf(x) = ∫ Rn Ω(x − y) |x − y|n−δ f(y) dy, the multilinear operator related to Tδ is defined by TA δ f(x) = ∫ Rn Rm+1(A; x, y) |x − y|m+n−δ Ω(x − y)f(y) dy, where Ω is homogeneous of degree zero on Rn, ∫ Sn−1 Ω(x′)dσ(x′) = 0 and Ω ∈ Lipγ(Sn−1) for 0 < γ ≤ 1, that is there exists a constant M > 0 such that for any x, y ∈ Sn−1, |Ω(x) − Ω(y)| ≤ M |x − y|γ . Then Tδ satisfies the conditions in Theorem 3.1. In fact, for supp f ⊂ (2Q)c and x ∈ Q = Q(x0, d), by the condition of Ω, we have (see [12]) ∣ ∣ ∣ ∣ Ω(x − y) |x − y|n−δ − Ω(x0 − y) |x0 − y|n−δ ∣ ∣ ∣ ∣ ≤ C ( |x − x0|γ |x0 − y|n+γ−δ + |x − x0| |x0 − y|n+1−δ ) , thus, similar to the proof of Theorem 2.1, |TA δ (f)(x) − TA δ (f)(x0)| ≤ C ∞ ∑ k=1 k(2−γk + 2−k)‖DαA‖BMO‖f‖Ln/δ ≤ C‖DαA‖BMO‖f‖Ln/δ . Therefore that TA δ is bounded from Ln/δ(Rn) to BMO(Rn) and from H1(Rn) to weak Ln/(n−δ)(Rn) and T̃A δ is bounded from H1(Rn) to Ln/(n−δ)(Rn) for all DαA ∈ BMO(Rn) with |α| = m. Acknowledgement. The author would like to express his deep gratitude to the referee for his valuable comments and suggestions. References [1] S. Chanillo, A note on commutators // Indiana Univ. Math. J., 31 (1982), 7–16. [2] W. Chen and G. Hu, Weak type (H1, L1) estimate for multilinear singular integral operator // Adv.in Math. (China), 30 (2001), 63–69. [3] J. Cohen, A sharp estimate for a multilinear singular integral on Rn // Indiana Univ. Math. J., 30 (1981), 693–702. [4] J. Cohen and J. Gosselin, On multilinear singular integral operators on Rn // Studia Math., 72 (1982), 199–223. L. Liu 519 [5] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral op- erators // Illinois J. Math., 30 (1986), 445–464. [6] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables // Ann. of Math., 103 (1976), 611–635. [7] Y. Ding and S. Z. Lu, Weighted boundedness for a class rough multilinear opera- tors // Acta Math. Sinica, 17 (2001), 517–526. [8] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. 16, Amsterdam, 1985. [9] E. Harboure, C. Segovia and J. L. Torrea, Boundedness of commutators of frac- tional and singular integrals for the extreme values of p // Illinois J. Math., 41 (1997), 676–700. [10] G. Hu and D. C. Yang, Multilinear oscillatory singular integral operators on Hardy spaces // Chinese J. of Contemporary Math., 18 (1997), 403–413. [11] Q. Wu and D. C. Yang, On fractional multilinear singular integrals // Math. Nachr., 239/240 (2002), 215–235. [12] E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscil- latory integrals, Princeton Univ. Press, Princeton NJ, 1993. [13] A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral // Colloq. Math., 60/61 (1990), 235–243. Contact information Lanzhe Liu College of Mathematics Changsha University of Science and Technology Changsha 410077, P.R. of China E-Mail: lanzheliu@163.com