Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids

We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2005
Автор: Khruslov, E.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/124586
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124586
record_format dspace
spelling Khruslov, E.Ya.
2017-09-29T14:29:41Z
2017-09-29T14:29:41Z
2005
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ.
1810-3200
2000 MSC. 35B27, 78M40
https://nasplib.isofts.kiev.ua/handle/123456789/124586
We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We derive a homogenized system of equations describing the leading term of the asymptotics. Assuming that a Korn-type inequality holds, we validate the homogenization procedure.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
spellingShingle Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
Khruslov, E.Ya.
title_short Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_full Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_fullStr Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_full_unstemmed Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_sort homogenization of maxwell's equations in domains with dense perfectly conducting grids
author Khruslov, E.Ya.
author_facet Khruslov, E.Ya.
publishDate 2005
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We derive a homogenized system of equations describing the leading term of the asymptotics. Assuming that a Korn-type inequality holds, we validate the homogenization procedure.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124586
citation_txt Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT khrusloveya homogenizationofmaxwellsequationsindomainswithdenseperfectlyconductinggrids
first_indexed 2025-12-07T13:17:44Z
last_indexed 2025-12-07T13:17:44Z
_version_ 1850855616424181760