Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2005 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124586 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124586 |
|---|---|
| record_format |
dspace |
| spelling |
Khruslov, E.Ya. 2017-09-29T14:29:41Z 2017-09-29T14:29:41Z 2005 Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ. 1810-3200 2000 MSC. 35B27, 78M40 https://nasplib.isofts.kiev.ua/handle/123456789/124586 We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We derive a homogenized system of equations describing the leading term of the asymptotics. Assuming that a Korn-type inequality holds, we validate the homogenization procedure. en Інститут прикладної математики і механіки НАН України Український математичний вісник Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids |
| spellingShingle |
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids Khruslov, E.Ya. |
| title_short |
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids |
| title_full |
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids |
| title_fullStr |
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids |
| title_full_unstemmed |
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids |
| title_sort |
homogenization of maxwell's equations in domains with dense perfectly conducting grids |
| author |
Khruslov, E.Ya. |
| author_facet |
Khruslov, E.Ya. |
| publishDate |
2005 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We derive a homogenized system of equations describing the leading term of the asymptotics. Assuming that a Korn-type inequality holds, we validate the homogenization procedure.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124586 |
| citation_txt |
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT khrusloveya homogenizationofmaxwellsequationsindomainswithdenseperfectlyconductinggrids |
| first_indexed |
2025-12-07T13:17:44Z |
| last_indexed |
2025-12-07T13:17:44Z |
| _version_ |
1850855616424181760 |