The Cauchy problem for degenerate parabolic equations with source and damping
We prove optimal estimates for the decay of mass of solutions to the Cauchy problem for a wide class of quasilinear parabolic equations with damping terms. In the degenerate case, we also prove estimates for the finite speed of propagation. When the equation contains also a blow up term, we discuss...
Saved in:
| Published in: | Український математичний вісник |
|---|---|
| Date: | 2004 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2004
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124607 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The Cauchy problem for degenerate parabolic equations with source and damping / D. Andreucci, A. F. Tedeev, M. Ughi // Український математичний вісник. — 2004. — Т. 1, № 1. — С. 1-20. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We prove optimal estimates for the decay of mass of solutions to the Cauchy problem for a wide class of quasilinear parabolic equations with damping terms. In the degenerate case, we also prove estimates for the finite speed of propagation. When the equation contains also a blow up term, we discuss existence and nonexistence of global solutions.
|
|---|---|
| ISSN: | 1810-3200 |