Pseudo-nearrings and quasi-modules over them

In this paper we start to investigate a new notion of pseudo-nearrings and a generalization of linear spaces to quasi-modules over pseudo-nearrings. Pseudo-nearrings can be treated as ringoids in the sense of J. Hion (see [6]). The idea of pseudo-nearings is based on the notion of a ∗-associative qu...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2004
Автори: Chwastyk, A., Glazek, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/124613
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Pseudo-nearrings and quasi-modules over them / A. Chwastyk, K. Glazek // Український математичний вісник. — 2004. — Т. 1, № 1. — С. 129-139. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper we start to investigate a new notion of pseudo-nearrings and a generalization of linear spaces to quasi-modules over pseudo-nearrings. Pseudo-nearrings can be treated as ringoids in the sense of J. Hion (see [6]). The idea of pseudo-nearings is based on the notion of a ∗-associative quasigroup, i.e. on an involutive groupoid (A;+,* ) in which the following identities hold: (x*)* = x, (x + y)* = y* + x*, (x + y)* + z = x + (y + z)*. We assume also commutativity and quasigroup properties of (A;+).
ISSN:1810-3200