Pseudo-nearrings and quasi-modules over them
In this paper we start to investigate a new notion of pseudo-nearrings and a generalization of linear spaces to quasi-modules over pseudo-nearrings. Pseudo-nearrings can be treated as ringoids in the sense of J. Hion (see [6]). The idea of pseudo-nearings is based on the notion of a ∗-associative qu...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2004 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124613 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Pseudo-nearrings and quasi-modules over them / A. Chwastyk, K. Glazek // Український математичний вісник. — 2004. — Т. 1, № 1. — С. 129-139. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124613 |
|---|---|
| record_format |
dspace |
| spelling |
Chwastyk, A. Glazek, K. 2017-09-30T08:19:13Z 2017-09-30T08:19:13Z 2004 Pseudo-nearrings and quasi-modules over them / A. Chwastyk, K. Glazek // Український математичний вісник. — 2004. — Т. 1, № 1. — С. 129-139. — Бібліогр.: 10 назв. — англ. 1810-3200 2000 MSC. 20N02, 20N05, 16Y30, 16W10, 16D99. https://nasplib.isofts.kiev.ua/handle/123456789/124613 In this paper we start to investigate a new notion of pseudo-nearrings and a generalization of linear spaces to quasi-modules over pseudo-nearrings. Pseudo-nearrings can be treated as ringoids in the sense of J. Hion (see [6]). The idea of pseudo-nearings is based on the notion of a ∗-associative quasigroup, i.e. on an involutive groupoid (A;+,* ) in which the following identities hold: (x*)* = x, (x + y)* = y* + x*, (x + y)* + z = x + (y + z)*. We assume also commutativity and quasigroup properties of (A;+). en Інститут прикладної математики і механіки НАН України Український математичний вісник Pseudo-nearrings and quasi-modules over them Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Pseudo-nearrings and quasi-modules over them |
| spellingShingle |
Pseudo-nearrings and quasi-modules over them Chwastyk, A. Glazek, K. |
| title_short |
Pseudo-nearrings and quasi-modules over them |
| title_full |
Pseudo-nearrings and quasi-modules over them |
| title_fullStr |
Pseudo-nearrings and quasi-modules over them |
| title_full_unstemmed |
Pseudo-nearrings and quasi-modules over them |
| title_sort |
pseudo-nearrings and quasi-modules over them |
| author |
Chwastyk, A. Glazek, K. |
| author_facet |
Chwastyk, A. Glazek, K. |
| publishDate |
2004 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper we start to investigate a new notion of pseudo-nearrings and a generalization of linear spaces to quasi-modules over pseudo-nearrings. Pseudo-nearrings can be treated as ringoids in the sense of J. Hion (see [6]). The idea of pseudo-nearings is based on the notion of a ∗-associative quasigroup, i.e. on an involutive groupoid (A;+,* ) in which the following identities hold: (x*)* = x, (x + y)* = y* + x*, (x + y)* + z = x + (y + z)*. We assume also commutativity and quasigroup properties of (A;+).
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124613 |
| citation_txt |
Pseudo-nearrings and quasi-modules over them / A. Chwastyk, K. Glazek // Український математичний вісник. — 2004. — Т. 1, № 1. — С. 129-139. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT chwastyka pseudonearringsandquasimodulesoverthem AT glazekk pseudonearringsandquasimodulesoverthem |
| first_indexed |
2025-12-07T18:35:10Z |
| last_indexed |
2025-12-07T18:35:10Z |
| _version_ |
1850875587243016192 |