Semilinear parabolic equations with superlinear reaction terms, and application to some convection-diffusion problems

We are interested in the existence of distributional solutions for two types of nonlinear evolution problems, whose models are (1.1) and (1.2) below. In the first one the nonlinear reaction term depends on the solution with a slightly superlinear growth. In the second one we consider a first order t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Dall'Aglio, A., Giachett, D., Segura de Leon, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2004
Schriftenreihe:Український математичний вісник
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124629
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Semilinear parabolic equations with superlinear reaction terms, and application to some convection-diffusion problems / A. Dall'Aglio, D. Giachett, S. Segura de Leon // Український математичний вісник. — 2004. — Т. 1, № 4. — С. 518-531. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We are interested in the existence of distributional solutions for two types of nonlinear evolution problems, whose models are (1.1) and (1.2) below. In the first one the nonlinear reaction term depends on the solution with a slightly superlinear growth. In the second one we consider a first order term depending also on the gradient of the solution in a quadratic way. The two problems are strictly related from the point of view of the a priori estimates we can obtain on their solutions. We point out that no boundedness is assumed on the data of the problems. This implies that the methods involving sub/super-solutions do not apply, and we have to use some convenient test-function to prove the a priori estimates.