On kinetic formulation of first-order hyperbolic quasilinear systems

We give kinetic formulation of measure valued and strong measure valued solutions to the Cauchy problem for a first-order quasilinear equation. For the corresponding kinetic equation the class of existence and uniqueness to the Cauchy problem is extracted. This class consists of so-called entropy so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2004
1. Verfasser: Panov, E.Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2004
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/124631
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On kinetic formulation of first-order hyperbolic quasilinear systems / E.Yu. Panov // Український математичний вісник. — 2004. — Т. 1, № 4. — С. 548-563. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-124631
record_format dspace
spelling Panov, E.Yu.
2017-09-30T12:40:46Z
2017-09-30T12:40:46Z
2004
On kinetic formulation of first-order hyperbolic quasilinear systems / E.Yu. Panov // Український математичний вісник. — 2004. — Т. 1, № 4. — С. 548-563. — Бібліогр.: 14 назв. — англ.
1810-3200
2000 MSC. 35L60, 35L45.
https://nasplib.isofts.kiev.ua/handle/123456789/124631
We give kinetic formulation of measure valued and strong measure valued solutions to the Cauchy problem for a first-order quasilinear equation. For the corresponding kinetic equation the class of existence and uniqueness to the Cauchy problem is extracted. This class consists of so-called entropy solutions, which correspond to strong measure valued solutions of the original problem. In the last section we generalized these results to the case of symmetric generally nonconservative multidimensional systems and introduce the notion of a strong measure valued solution, based only on the kinetic approach under consideration.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
On kinetic formulation of first-order hyperbolic quasilinear systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On kinetic formulation of first-order hyperbolic quasilinear systems
spellingShingle On kinetic formulation of first-order hyperbolic quasilinear systems
Panov, E.Yu.
title_short On kinetic formulation of first-order hyperbolic quasilinear systems
title_full On kinetic formulation of first-order hyperbolic quasilinear systems
title_fullStr On kinetic formulation of first-order hyperbolic quasilinear systems
title_full_unstemmed On kinetic formulation of first-order hyperbolic quasilinear systems
title_sort on kinetic formulation of first-order hyperbolic quasilinear systems
author Panov, E.Yu.
author_facet Panov, E.Yu.
publishDate 2004
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description We give kinetic formulation of measure valued and strong measure valued solutions to the Cauchy problem for a first-order quasilinear equation. For the corresponding kinetic equation the class of existence and uniqueness to the Cauchy problem is extracted. This class consists of so-called entropy solutions, which correspond to strong measure valued solutions of the original problem. In the last section we generalized these results to the case of symmetric generally nonconservative multidimensional systems and introduce the notion of a strong measure valued solution, based only on the kinetic approach under consideration.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/124631
citation_txt On kinetic formulation of first-order hyperbolic quasilinear systems / E.Yu. Panov // Український математичний вісник. — 2004. — Т. 1, № 4. — С. 548-563. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT panoveyu onkineticformulationoffirstorderhyperbolicquasilinearsystems
first_indexed 2025-12-07T18:03:03Z
last_indexed 2025-12-07T18:03:03Z
_version_ 1850873566844682240