Точное число эллиптических кривых в канонической форме, изоморфных кривым Эдвардса над простым полем
Найдены необходимые и достаточные условия для параметров кривой в канонической форме с двумя точками четвертого порядка. Доказаны две леммы о квадратичных вычетах в конечном поле с использованием схемы Гаусса для квадратичных вычетов и невычетов. На их основе получены точные формулы расчета числа эл...
Saved in:
| Published in: | Кибернетика и системный анализ |
|---|---|
| Date: | 2015 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124772 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Точное число эллиптических кривых в канонической форме, изоморфных кривым Эдвардса над простым полем / А.В. Бессалов, Л.В. Ковальчук // Кибернетика и системный анализ. — 2015. — Т. 51, № 2. — С. 3-12. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Найдены необходимые и достаточные условия для параметров кривой в канонической форме с двумя точками четвертого порядка. Доказаны две леммы о квадратичных вычетах в конечном поле с использованием схемы Гаусса для квадратичных вычетов и невычетов. На их основе получены точные формулы расчета числа эллиптических кривых с ненулевыми параметрами а и b и двумя точками четвертого порядка, изоморфных кривым Эдвардса над простым полем. Доказано, что для больших полей доля таких кривых близка к 1/4.
Знайдено необхідні та достатні умови для параметрів кривої у канонічній формі з двома точками четвертого порядку. Доведено дві леми про квадратичні лишки у скінченному полі з використанням схеми Гауcса для квадратичних лишків та нелишків. На їх основі отримано точні формули обчислення кількості еліптичних кривих з ненульовими параметрами а та b і двома точками четвертого порядку, ізоморфних кривим Едвардса над простим полем. Доведено, що для великих полів частка таких кривих близька до 1/4.
The necessary and sufficient conditions for the parameters of the curve in the canonical form with two points of order 4 are found. Two lemmas are proved about the properties of quadratic residues, using the Gauss scheme for quadratic residues and non-residues. Based on this lemmas, the exact formulas are derived for calculating the number of elliptic curves with non-zero parameters a and b and two points of order 4 that are isomorphic to Edwards curves over the prime field. It is proved that for large fields the share of such curves is close to 1/4.
|
|---|---|
| ISSN: | 0023-1274 |