Математическая модель рассеяния волн импедансной решеткой
Предложено развитие численно-аналитического метода решения задачи рассеяния акустических и электромагнитных волн импедансной решеткой. Задача приводит к третьей краевой задаче для двумерного уравнения Гельмгольца с дополнительными условиями. Краевая задача сведена к граничным интегральным уравнениям...
Збережено в:
| Опубліковано в: : | Кибернетика и системный анализ |
|---|---|
| Дата: | 2015 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124818 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Математическая модель рассеяния волн импедансной решеткой / А.В. Костенко // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 25-43. — Бібліогр.: 25 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124818 |
|---|---|
| record_format |
dspace |
| spelling |
Костенко, А.В. 2017-10-05T19:56:24Z 2017-10-05T19:56:24Z 2015 Математическая модель рассеяния волн импедансной решеткой / А.В. Костенко // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 25-43. — Бібліогр.: 25 назв. — рос. 0023-1274 https://nasplib.isofts.kiev.ua/handle/123456789/124818 517.698.519.6 Предложено развитие численно-аналитического метода решения задачи рассеяния акустических и электромагнитных волн импедансной решеткой. Задача приводит к третьей краевой задаче для двумерного уравнения Гельмгольца с дополнительными условиями. Краевая задача сведена к граничным интегральным уравнениям, представлена модификация метода дискретных особенностей для их численного решения. Получены зависимости интегральной характеристики решений задачи от частоты. Розширено область застосування чисельно-аналітичного методу розв’язування задачі розсіяння акустичних та електромагнітних хвиль імпедансною ґраткою. Задача приводить до граничної умови третього роду для двовимірного рівняння Гельмгольця з додатковими умовами. Граничну задачу зведено до граничних інтегральних рівнянь. Метод дискретних особливостей модифіковано для чисельного розв’язання цих рівнянь. Отримано залежності інтегральної характеристики розв’язків задачі від частоти. A numerical analytical method of solving the scattering problem for acoustic and electromagnetic waves by an impedance lattice is presented. The problem leads to a third type boundary problem for the two-dimensional Helmholtz equation with additional conditions. The boundary-value problem is reduced to boundary integral equations and the discrete singularities method is modified to solve them numerically. The dependence between the integral characteristics of the solutions and the frequency is obtained. Работа выполнена при частичной финансовой поддержке Фонда имени Н.И. Ахиезера (2014). ru Інститут кібернетики ім. В.М. Глушкова НАН України Кибернетика и системный анализ Кибернетика Математическая модель рассеяния волн импедансной решеткой Математична модель розсіяння хвиль імпедансною ґраткою Mathematical model of wave scattering by impedance lattice Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Математическая модель рассеяния волн импедансной решеткой |
| spellingShingle |
Математическая модель рассеяния волн импедансной решеткой Костенко, А.В. Кибернетика |
| title_short |
Математическая модель рассеяния волн импедансной решеткой |
| title_full |
Математическая модель рассеяния волн импедансной решеткой |
| title_fullStr |
Математическая модель рассеяния волн импедансной решеткой |
| title_full_unstemmed |
Математическая модель рассеяния волн импедансной решеткой |
| title_sort |
математическая модель рассеяния волн импедансной решеткой |
| author |
Костенко, А.В. |
| author_facet |
Костенко, А.В. |
| topic |
Кибернетика |
| topic_facet |
Кибернетика |
| publishDate |
2015 |
| language |
Russian |
| container_title |
Кибернетика и системный анализ |
| publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
| format |
Article |
| title_alt |
Математична модель розсіяння хвиль імпедансною ґраткою Mathematical model of wave scattering by impedance lattice |
| description |
Предложено развитие численно-аналитического метода решения задачи рассеяния акустических и электромагнитных волн импедансной решеткой. Задача приводит к третьей краевой задаче для двумерного уравнения Гельмгольца с дополнительными условиями. Краевая задача сведена к граничным интегральным уравнениям, представлена модификация метода дискретных особенностей для их численного решения. Получены зависимости интегральной характеристики решений задачи от частоты.
Розширено область застосування чисельно-аналітичного методу розв’язування задачі розсіяння акустичних та електромагнітних хвиль імпедансною ґраткою. Задача приводить до граничної умови третього роду для двовимірного рівняння Гельмгольця з додатковими умовами. Граничну задачу зведено до граничних інтегральних рівнянь. Метод дискретних особливостей модифіковано для чисельного розв’язання цих рівнянь. Отримано залежності інтегральної характеристики розв’язків задачі від частоти.
A numerical analytical method of solving the scattering problem for acoustic and electromagnetic waves by an impedance lattice is presented. The problem leads to a third type boundary problem for the two-dimensional Helmholtz equation with additional conditions. The boundary-value problem is reduced to boundary integral equations and the discrete singularities method is modified to solve them numerically. The dependence between the integral characteristics of the solutions and the frequency is obtained.
|
| issn |
0023-1274 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124818 |
| citation_txt |
Математическая модель рассеяния волн импедансной решеткой / А.В. Костенко // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 25-43. — Бібліогр.: 25 назв. — рос. |
| work_keys_str_mv |
AT kostenkoav matematičeskaâmodelʹrasseâniâvolnimpedansnoirešetkoi AT kostenkoav matematičnamodelʹrozsíânnâhvilʹímpedansnoûgratkoû AT kostenkoav mathematicalmodelofwavescatteringbyimpedancelattice |
| first_indexed |
2025-12-07T20:17:49Z |
| last_indexed |
2025-12-07T20:17:49Z |
| _version_ |
1850882045029384192 |