Эволюционно-фрагментарная модель задачи трассировки
Рассматривается один из вариантов задачи трассировки на плоской целочисленной решетке. Показано, что эта задача может быть представлена как задача поиска слов с определенными свойствами над конечным алфавитом. В свою очередь задача поиска оптимальных слов может рассматриваться как задача с фрагмента...
Saved in:
| Published in: | Кибернетика и системный анализ |
|---|---|
| Date: | 2015 |
| Main Authors: | , , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124825 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Эволюционно-фрагментарная модель задачи трассировки / И.В. Козин, Е.В. Кривцун, В.П. Пинчук // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 125-131. — Бібліогр.: 10 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Рассматривается один из вариантов задачи трассировки на плоской целочисленной решетке. Показано, что эта задача может быть представлена как задача поиска слов с определенными свойствами над конечным алфавитом. В свою очередь задача поиска оптимальных слов может рассматриваться как задача с фрагментарной структурой. Получена комбинаторная оценка множества допустимых слов, установлена нижняя оценка плотности в задаче поиска оптимальной трассировки с критерием плотности. Построена эволюционно-фрагментарная модель задачи трассировки, для малых размеров получены оптимальные и близкие к оптимальным решения этой задачи.
Розглянуто один з варіантів задачі трасування на плоскій цілочисловій гратці. Показано, що цю задачу можна сформулювати як задачу пошуку слів з певними властивостями над кінцевим алфавітом. У свою чергу, задача пошуку оптимальних слів може розглядатися як задача з фрагментарною структурою. Отримано комбінаторну оцінку множини допустимих слів, встановлено нижню оцінку щільності в задачі пошуку оптимального трасування з критерієм щільності. Побудовано еволюційно-фрагментарну модель задачі трасування, для малих розмірів отримано оптимальні і близькі до оптимальних розв’язки цієї задачі.
In this paper we consider one of the variants of the routing problem on a plane integer lattice. It is shown that this problem can be represented as a problem of searching for words with certain properties over a finite alphabet. In turn, the problem of finding optimal words can be considered as a problem with fragmentary structure. A combinatorial estimate for set of feasible words was derived and the lower bound of the density was established for the problem of finding optimal line density. An evolutionary-fragmentary model of the routing problem is constructed. Optimal and near-optimal solutions are obtained for this problem for small sizes.
|
|---|---|
| ISSN: | 0023-1274 |