Нижний альтернированный интеграл Понтрягина для дифференциальных включений

Рассмотрены упрощенные схемы построения нижнего альтернированного интеграла Понтрягина для игр преследования, описываемых дифференциальными включениями вида z(t)∊F(t,u), где F непрерывное компактнозначное отображение. Показано, что для начальных состояний, к которым применим нижний альтернированный...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кибернетика и системный анализ
Дата:2015
Автор: Исканаджиев, И.М.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/124914
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Нижний альтернированный интеграл Понтрягина для дифференциальных включений / И.М. Исканаджиев // Кибернетика и системный анализ. — 2015. — Т. 51, № 5. — С. 128-138. — Бібліогр.: 20 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Рассмотрены упрощенные схемы построения нижнего альтернированного интеграла Понтрягина для игр преследования, описываемых дифференциальными включениями вида z(t)∊F(t,u), где F непрерывное компактнозначное отображение. Показано, что для начальных состояний, к которым применим нижний альтернированный интеграл, существует стратегия преследователя, гарантирующая точное завершение преследования и имеющая кусочно-постоянные реализации. Розглянуто нові спрощенi схеми побудови нижнього альтернованого інтегралу Понтрягіна для ігор переслідування, що описуються диференціальними включеннями типу z(t)∊F(t,u), де F неперервне компактне відображення. Показано, що для початкових станiв, до яких застосовується нижнiй альтернований iнтеграл, iснує стратегія переслідувача, що гарантує точне закiнчення переслідування і має кусково-сталі реалiзацiї The author proposes simplified schemes for the construction of the lower Pontryagin’s alternating integral in pursuit games described by the differential inclusion z(t)∊F(t,u), where F is a continuous compact-valued mapping. Based on this schemes, the author proves that for the initial states to which the lower alternating integral can be applied, there exists a pursuer’s strategy that guarantees exact completion of the pursuit and has piecewise constant realizations.
ISSN:0023-1274