Нижний альтернированный интеграл Понтрягина для дифференциальных включений
Рассмотрены упрощенные схемы построения нижнего альтернированного интеграла Понтрягина для игр преследования, описываемых дифференциальными включениями вида z(t)∊F(t,u), где F непрерывное компактнозначное отображение. Показано, что для начальных состояний, к которым применим нижний альтернированный...
Saved in:
| Published in: | Кибернетика и системный анализ |
|---|---|
| Date: | 2015 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/124914 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Нижний альтернированный интеграл Понтрягина для дифференциальных включений / И.М. Исканаджиев // Кибернетика и системный анализ. — 2015. — Т. 51, № 5. — С. 128-138. — Бібліогр.: 20 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Рассмотрены упрощенные схемы построения нижнего альтернированного интеграла Понтрягина для игр преследования, описываемых дифференциальными включениями вида z(t)∊F(t,u), где F непрерывное компактнозначное отображение. Показано, что для начальных состояний, к которым применим нижний альтернированный интеграл, существует стратегия преследователя, гарантирующая точное завершение преследования и имеющая кусочно-постоянные реализации.
Розглянуто нові спрощенi схеми побудови нижнього альтернованого інтегралу Понтрягіна для ігор переслідування, що описуються диференціальними включеннями типу z(t)∊F(t,u), де F неперервне компактне відображення. Показано, що для початкових станiв, до яких застосовується нижнiй альтернований iнтеграл, iснує стратегія переслідувача, що гарантує точне закiнчення переслідування і має кусково-сталі реалiзацiї
The author proposes simplified schemes for the construction of the lower Pontryagin’s alternating integral in pursuit games described by the differential inclusion z(t)∊F(t,u), where F is a continuous compact-valued mapping. Based on this schemes, the author proves that for the initial states to which the lower alternating integral can be applied, there exists a pursuer’s strategy that guarantees exact completion of the pursuit and has piecewise constant realizations.
|
|---|---|
| ISSN: | 0023-1274 |