Metastable host–guest structure of carbon

A family of metastable host–guest structures, the prototype of which is a tetragonal tP9 structure with 9 atoms per cell has been found. It is composed of an 8-atoms tetragonal host, with atoms filling channels oriented along the c-axis. The tP9 structure has a strong analogy with the recently disco...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Сверхтвердые материалы
Дата:2014
Автори: Zhu, Q., Feya, O.D., Boulfelfel, S.E., Oganov, A.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/126119
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Metastable host–guest structure of carbon / Q. Zhu, O.D. Feya, S.E. Boulfelfel, A.R. Oganov // Сверхтвердые материалы. — 2014. — № 4. — С. 40-52. — Бібліогр.: 49 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-126119
record_format dspace
spelling Zhu, Q.
Feya, O.D.
Boulfelfel, S.E.
Oganov, A.R.
2017-11-14T18:16:57Z
2017-11-14T18:16:57Z
2014
Metastable host–guest structure of carbon / Q. Zhu, O.D. Feya, S.E. Boulfelfel, A.R. Oganov // Сверхтвердые материалы. — 2014. — № 4. — С. 40-52. — Бібліогр.: 49 назв. — англ.
0203-3119
https://nasplib.isofts.kiev.ua/handle/123456789/126119
546.261:539.218
A family of metastable host–guest structures, the prototype of which is a tetragonal tP9 structure with 9 atoms per cell has been found. It is composed of an 8-atoms tetragonal host, with atoms filling channels oriented along the c-axis. The tP9 structure has a strong analogy with the recently discovered Ba-IV- and Rb-IV-type incommensurate structures. By considering modulations of the structure due to the variations of the host/guest ratio, it has been concluded that the most stable representative of this family of structures has a guest/host ratio of 2/3 and 26 atoms in the unit cell (space group P42/m). This structure is 0.39 eV/atom higher in energy than diamond. We predict it to have band gap 4.1 eV, bulk modulus 384 GPa, and hardness 61–71 GPa. Due to the different local environments of the host and guest atoms, we considered the possibility of replacing carbon atoms in the guest sublattice by Si atoms in the tP9 prototype and study the properties of the resulting compound SiC₈, which was found to have similarly remarkably high bulk modulus 361.2 GPa and hardness 46.2 GPa.
Повідомляється про сімейство метастабільних структур господаргість, прототипом якого є тетрагональна структура tP9 з дев’ятьма атомами в комірці. Вона складається з восьми атомів тетрагонального господаря, що заповнюють канали, орієнтовані вздовж осі с. Структура tP9 аналогічна недавно відкритим Ba-IV- й Rb-IV-типам несумірних структур. Враховуючи модуляцію структури через варіацій співвідношень господар/гість, зроблено висновок, що найбільш стабільний представник цього сімейства структур має відношення гість/господар – 2/3 і 26 атомів в елементарній комірці (просторова група P42/m). Енергія цієї структури на 0,39 еВ/атом вище, ніж алмазу. Ця структура, за прогнозами, повинна мати заборонену зону – 4,1 еВ, об’ємний модуль – 384 ГПа, а твердість – 61–71 ГПа. Через різні локальні стани атомів господаря і гостя розглянуто можливість заміни атомів вуглецю гостьової підґратки атомами Si в прототипі tP9 і вивчені властивості отриманої сполуки SiC₈, які, як було виявлено, мають вельми високий об’ємний модуль пружності – 361,2 ГПа і твердість 46,2 ГПа.
Сообщается о семействе метастабильных структур хозяин–гость, прототипом которого является тетрагональная структура tP9 с девятью атомами в ячейке. Она состоит из восьми атомов тетрагонального хозяина, заполняющих каналы, ориентированные вдоль оси с. Структура tP9 аналогична недавно открытым Ba-IV- и Rb-IV-типам несоразмерных структур. Учитывая модуляцию структуры из-за вариаций отношения хозяин/гость, сделан вывод, что наиболее стабильный представитель этого семейства структур имеет отношение гость/хозяин – 2/3 и 26 атомов в элементарной ячейке (пространственная группа P42/m). Энергия этой структуры на 0,39 эВ/атом выше, чем алмаза. Эта структура, по прогнозам, должна иметь запрещенную зону – 4,1 эВ, модуль объемного сжатия – 384 ГПа, а твердость – 61–71 ГПа. Из-за различных локальных состояний атомов хозяина и гостя рассмотрена возможность замены атомов углерода гостевой подрешетки атомами Si в прототипе tP9 и изучены свойства полученного соединения SiC₈, которое, как было обнаружено, имеет весьма высокий модуль объемного сжатия – 361,2 ГПа и твердость 46,2 ГПа.
We thank the National Science Foundation (EAR-1114313, DMR-1231586), DARPA (Grants No. W31P4Q1310005 and No. W31P4Q1210008), and the Government (No. 14.A12.31.0003) and the Ministry of Education and Science of Russian Federation (Project No. 8512) for financial support.
en
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
Сверхтвердые материалы
Получение, структура, свойства
Metastable host–guest structure of carbon
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Metastable host–guest structure of carbon
spellingShingle Metastable host–guest structure of carbon
Zhu, Q.
Feya, O.D.
Boulfelfel, S.E.
Oganov, A.R.
Получение, структура, свойства
title_short Metastable host–guest structure of carbon
title_full Metastable host–guest structure of carbon
title_fullStr Metastable host–guest structure of carbon
title_full_unstemmed Metastable host–guest structure of carbon
title_sort metastable host–guest structure of carbon
author Zhu, Q.
Feya, O.D.
Boulfelfel, S.E.
Oganov, A.R.
author_facet Zhu, Q.
Feya, O.D.
Boulfelfel, S.E.
Oganov, A.R.
topic Получение, структура, свойства
topic_facet Получение, структура, свойства
publishDate 2014
language English
container_title Сверхтвердые материалы
publisher Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
format Article
description A family of metastable host–guest structures, the prototype of which is a tetragonal tP9 structure with 9 atoms per cell has been found. It is composed of an 8-atoms tetragonal host, with atoms filling channels oriented along the c-axis. The tP9 structure has a strong analogy with the recently discovered Ba-IV- and Rb-IV-type incommensurate structures. By considering modulations of the structure due to the variations of the host/guest ratio, it has been concluded that the most stable representative of this family of structures has a guest/host ratio of 2/3 and 26 atoms in the unit cell (space group P42/m). This structure is 0.39 eV/atom higher in energy than diamond. We predict it to have band gap 4.1 eV, bulk modulus 384 GPa, and hardness 61–71 GPa. Due to the different local environments of the host and guest atoms, we considered the possibility of replacing carbon atoms in the guest sublattice by Si atoms in the tP9 prototype and study the properties of the resulting compound SiC₈, which was found to have similarly remarkably high bulk modulus 361.2 GPa and hardness 46.2 GPa. Повідомляється про сімейство метастабільних структур господаргість, прототипом якого є тетрагональна структура tP9 з дев’ятьма атомами в комірці. Вона складається з восьми атомів тетрагонального господаря, що заповнюють канали, орієнтовані вздовж осі с. Структура tP9 аналогічна недавно відкритим Ba-IV- й Rb-IV-типам несумірних структур. Враховуючи модуляцію структури через варіацій співвідношень господар/гість, зроблено висновок, що найбільш стабільний представник цього сімейства структур має відношення гість/господар – 2/3 і 26 атомів в елементарній комірці (просторова група P42/m). Енергія цієї структури на 0,39 еВ/атом вище, ніж алмазу. Ця структура, за прогнозами, повинна мати заборонену зону – 4,1 еВ, об’ємний модуль – 384 ГПа, а твердість – 61–71 ГПа. Через різні локальні стани атомів господаря і гостя розглянуто можливість заміни атомів вуглецю гостьової підґратки атомами Si в прототипі tP9 і вивчені властивості отриманої сполуки SiC₈, які, як було виявлено, мають вельми високий об’ємний модуль пружності – 361,2 ГПа і твердість 46,2 ГПа. Сообщается о семействе метастабильных структур хозяин–гость, прототипом которого является тетрагональная структура tP9 с девятью атомами в ячейке. Она состоит из восьми атомов тетрагонального хозяина, заполняющих каналы, ориентированные вдоль оси с. Структура tP9 аналогична недавно открытым Ba-IV- и Rb-IV-типам несоразмерных структур. Учитывая модуляцию структуры из-за вариаций отношения хозяин/гость, сделан вывод, что наиболее стабильный представитель этого семейства структур имеет отношение гость/хозяин – 2/3 и 26 атомов в элементарной ячейке (пространственная группа P42/m). Энергия этой структуры на 0,39 эВ/атом выше, чем алмаза. Эта структура, по прогнозам, должна иметь запрещенную зону – 4,1 эВ, модуль объемного сжатия – 384 ГПа, а твердость – 61–71 ГПа. Из-за различных локальных состояний атомов хозяина и гостя рассмотрена возможность замены атомов углерода гостевой подрешетки атомами Si в прототипе tP9 и изучены свойства полученного соединения SiC₈, которое, как было обнаружено, имеет весьма высокий модуль объемного сжатия – 361,2 ГПа и твердость 46,2 ГПа.
issn 0203-3119
url https://nasplib.isofts.kiev.ua/handle/123456789/126119
citation_txt Metastable host–guest structure of carbon / Q. Zhu, O.D. Feya, S.E. Boulfelfel, A.R. Oganov // Сверхтвердые материалы. — 2014. — № 4. — С. 40-52. — Бібліогр.: 49 назв. — англ.
work_keys_str_mv AT zhuq metastablehostgueststructureofcarbon
AT feyaod metastablehostgueststructureofcarbon
AT boulfelfelse metastablehostgueststructureofcarbon
AT oganovar metastablehostgueststructureofcarbon
first_indexed 2025-11-27T04:25:09Z
last_indexed 2025-11-27T04:25:09Z
_version_ 1850799809419542528
fulltext www.ism.kiev.ua/stm 40 UDC 546.261:539.218 Q. Zhu* (Stony Brook, NY, US) O. D. Feya (Dolgoprudny city, Moscow Region, Russian Federation) S. E. Boulfelfel ( Stony Brook, NY, US) A. R. Oganov** (Stony Brook, NY, US; Dolgoprudny city, Moscow Region, Russian Federation; Xi’an, P. R. China) *alecfans@gmail.com **artem.oganov@sunysb.edu Metastable host–guest structure of carbon A family of metastable host–guest structures, the prototype of which is a tetragonal tP9 structure with 9 atoms per cell has been found. It is composed of an 8-atoms tetragonal host, with atoms filling channels oriented along the c-axis. The tP9 structure has a strong analogy with the recently discovered Ba-IV- and Rb-IV-type incommensurate structures. By considering modulations of the structure due to the variations of the host/guest ratio, it has been concluded that the most stable representative of this family of structures has a guest/host ratio of 2/3 and 26 atoms in the unit cell (space group P42/m). This structure is 0.39 eV/atom higher in energy than diamond. We predict it to have band gap 4.1 eV, bulk modulus 384 GPa, and hardness 61–71 GPa. Due to the different local environments of the host and guest atoms, we considered the possibility of replacing carbon atoms in the guest sublattice by Si atoms in the tP9 prototype and study the properties of the resulting compound SiC8, which was found to have similarly remarkably high bulk modulus 361.2 GPa and hardness 46.2 GPa. Keywords: density functional theory, evolutionary algorithm, incommensurate crystal, silicon carbide. INTRODUCTION Carbon is a unique element in the sense that it adopts a wide range of structures, from superhard insulators (diamond and lonsdaleite) to ultrasoft semimetals (graphite, an excellent lubricant) and even superconductors (intercalated graphite and fullerenes, doped diamond) [1–5]. Among the solid phases, only graphite, diamond and bc8 phase (predicted to be stable at pressures above 1 TPa) have stability fields on the phase diagram. However, the number of all possible metastable phases is in principle infinite, and due to directional covalent bonding, many metastable carbon phases are known, and have extremely long (technically indefinite) lifetimes. Much work both in experiment and theory has been done to search for novel carbon phases with special properties (such as metallic conductivity, hardness, etc.) [6–17]. Until now, it has not been imagined that carbon could also adopt a host–guest structure. The nature of host–guest structures of compressed metals is still somewhat puz- zling, given their ubiquity and complex and relatively open topologies [18]. Since Ba-IV was first solved experimentally [19, 20], a series of complex phases with composite host–guest structures were found for alkali, alkali earth, group 15 and 16 © Q. ZHU, O. D. FEYA, S. E. BOULFELFEL, A. R. OGANOV, 2014 ISSN 0203-3119. Сверхтвердые материалы, 2014, № 4 41 elements (e.g., [21–29]). Recently, aluminum was also predicted to adopt a similar host–guest type structure at extremely high pressure (about 1 TPa) [30]. To the best of our knowledge, group 14 elements have not been reported to have host–guest structures. However, our structure searches uncovered such structures as metastable states. Although metastable, rather than thermodynamically stable, these are of great interest for the understanding of carbon polymorphism and of the nature of host–guest structures. The newly found structures provide an interesting way of constructing a host–guest network, suitable for low-coordinate atoms and alternative to the known Ba-IV and Rb-IV host–guest structure types. COMPUTATIONAL METHODS Evolutionary structure searches were performed using the USPEX code [31–33] in conjunction with ab initio structure relaxations using density functional theory (DFT) [34, 35] within the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) [36], and the all-electron projector-augmented wave [37, 38] (PAW) method, as implemented in the VASP code [39]. We used a PAW potential with [1s2] core, plane wave kinetic energy cutoff of 600 eV, and Brillouin zone sample with reciprocal space resolution of 2π×0.05 Å–1, which ensured excellent convergence of total energies, stresses, and energy differences. These calculations correctly yielded the ground states – graphite at normal conditions, diamond at high pressures, and bc8 at ultrahigh pressures above 1 TPa [31]. To ensure that the obtained structures are dynamically stable, we calculated phonon frequencies across the Brillouin zone using the frozen-phonon method as implemented in the PHONOPY code [40]. For obtaining the electronic density of states (DOS) of the 9-atom tP9 and SiC8 structures we used 5×5×8 grid for self- consistent calculations, followed by a non-self-consistent calculation with a 10×10×16 k-points grid, and same-resolution grids for the 26-atom modulated structure. Band structures were calculated using the hybrid functional HSE06 [41]. Bader analysis [42] was performed using the code [43]. We estimated hardnesses using the Lyakhov-Oganov approach [16] and the Chen-Niu model [44]; for the latter, bulk and shear moduli are required – these were computed within the Voigt- Reuss-Hill averaging scheme [45–47] of the elastic constants computed by finite strain method. RESULTS Host–guest structure of pure carbon We have performed structure searches at 0, 5, 10 GPa with 3, 4, 6, 9, 12 atoms per unit cell, respectively. Apart from the already known structures (diamond, lonsdaleite, bc8, M-carbon, bct4, etc.), our simulations also found a tetragonal host–guest structure. This composite structure is shown in Fig. 1, a, and consists of a host sublattice (8 atoms in the unit cell with lattice parameters a = b = 4.560 Å and c = 2.556 Å). The symmetry of the host sublattice is P42/m; there are two 4j Wyckoff sites – Ch1(0.288, 0.781, 0.223) and Ch2(0.839, 0.531, 0.266). The guest atoms occupy the sites Cg(0, 0, 0) and there is only 1 guest atom in the unit cell. The space group of the whole host–guest structure is lowered to P4. This structure has strong analogy with well-known Ba-IV and Rb-IV host–guest structure as shown in Fig. 1, c, 1d. The main difference is that carbon prefers low coordination numbers (in this structure, C atoms are in a distorted fourfold coordination), while the average coordination number of host and guest atoms is typically 8–10 in Ba- IV or Rb-IV type structures. tP9 is a low-coordinate host–guest structure. www.ism.kiev.ua/stm 42 a b c d Fig. 1. Crystal structure of tP9-carbon in two projections (a, b); also shown are Ba-IV (c) and Rb-IV (d) structures. Bond lengths within the host sublattice vary between 1.53–1.57 Å, while the shortest host–guest bond is 1.74 Å. Bond angles within the host sublattice are 107°90′ and 119°01′; guest-host bonds form angles 105°73′ and 124°91′. These values are close to the ideal angles of 109°28′ and 120° for sp3- and sp2- hybridizations. To compute the hardness of tP9, we used the Lyakhov-Oganov [16] and Chen- Niu [44] models – the results of these completely independent models being very similar, 70.4 and 72.8 GPa, respectively. The bulk modulus is remarkably high, 388 GPa (for comparison, the bulk modulus of diamond computed at the same level of theory is 431 GPa [15]). Its density is 3.37 g/cm3. We have calculated the enthalpies of the host–guest structure and some other well-known and hypothetical structures as a function of pressure (Fig. 2). Our host–guest structure is 0.55 eV/atom higher in energy than diamond at P = 0, but more energetically favorable than the predicted superdense allotropes [15]. At the same time, it is dynamically stable (i.e. there are no imaginary phonon frequencies, Fig. 3) and, once synthesized, may exist as a metastable phase. The electronic band structure of tP9 is shown in Fig. 4. According to the HSE06 hybrid functional (known to rather accurately estimate the band gaps of carbon allotropes), it is a semiconductor with an indirect band gap of 3 eV at zero pressure. The geometric difference between host and guest sublattices invites the question of possible charge transfer (as found in γ-boron [48]). We performed Bader analysis of the total charge density of tP9-carbon and results are presented in Table 1. As one can see, although different carbon sites have very different local ISSN 0203-3119. Сверхтвердые материалы, 2014, № 4 43 environments and there is a large variation of Bader volumes, charge transfer is quite modest in this structure, and Bader charges are rather small. 0 20 40 60 80 100 Pressure, GPa 1.5 0 1.0 0.5 –1.0 E nt h al py , r el at iv e to g ra ph it e, e V /a to m –0.5 Fig. 2. Enthalpies of various carbon structures, relative to graphite: diamond (+), lonsdaleite (×), M-carbon ( ), bct-4 (□), tP9 (■), tP12 (○), chiral (●), hP3 (∆), tl12 (▲), graphite (�). Γ Z M Γ A Γ X Wavevector 15 0 10 5 F re qu en cy , T H z 25 20 35 30 40 Fig. 3. Phonon dispersion curves of tP9-carbon. The absence of imaginary frequencies demon- strates dynamical stability. In the next section we explore an additional degree of freedom that host–guest structures have, namely the host/guest periodicity ratio. This allows us to obtain a more stable host–guest structure and explore its properties. www.ism.kiev.ua/stm 44 Γ X M A Γ Z Wavevector –10 0 –5 5 E n er gy , e V 10 a –26 –22 –18 –14 –10 –6 –2 2 6 10 14 Energy, eV 0 0.5D en si ty o f s ta te s, s ta te s/ eV ⋅u n it c el l 1.0 1.5 2.0 2.5 3.0 b Fig. 4. Density of states (a) and band structure (b) of tP9-carbon at 0 GPa, computed with the HSE06 hybrid functional. Table 1. Bader charges and volumes in tP9 carbon. Space group P 4 , lattice parameters a = b = 4.560 Å and c = 2.556 Å Position x y z Bader charge Bader volume, Å3 Cg 0.0000 0.0000 0.0000 –0.0580 6.8912 Ch1 0.2881 0.7804 0.2232 –0.0275 5.9987 Ch2 0.8394 0.5307 0.2662 +0.0423 5.4811 ISSN 0203-3119. Сверхтвердые материалы, 2014, № 4 45 Optimization of the host–guest ratio – exploring possible incommensurability Since most host–guest structures of metals are found to be incommensurate, we decided to explore this possibility here. To this end, we used the method of Arapan et al. [22] and performed calculations for a set of commensurate approximants with different Cg/Ch ratios (Cg and Ch are the numbers of guest and host cells in an approximant supercell, respectively). Because the total energy is a continuous function of structural parameters, after interpolating the energy as a function of Cg/Ch, one can obtain the minimum energy and the Cg/Ch ratio corresponding to it. If Cg/Ch is an irrational number, this would indicate an incommensurate modulation of the structure. Fig. 5 and Fig. 6 show the calculated energies and enthalpies of various commensurate structures; on can see that the commensurate structure with the Cg/Ch = 2/3, containing 26 atoms in the unit cell, is energetically optimal. Parameters of this structure are given in Table 2. 0 2 4 6 8 10 Pressure, GPa –8.8 E n th al py , eV /a to m –8.6 –8.4 –8.2 –8.0 –7.8 Fig. 5. Enthalpies of various commensurate analogues as a function of pressure: 1*1 (+), 1*2 (×), 2*3 ( ), 3*4 (□), 3*5 (■), 4*5 (○), 9*10 (●). 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 c1/c2 ratio –8.8 E nt h al py , e V /a to m –8.6 –8.4 –8.2 –8.0 –7.8 Fig. 6. Total energies of various commensurate structures. Outside the range c1/c2 ∈ [0.5, 1.5] the structure spontaneously changes into very different topologies. www.ism.kiev.ua/stm 46 Table 2. Bader charges and volumes in the 2/3 modulated structure. Space group P42/m, lattice parameters a = b = 4.600 Å, c = 7.499 Å Position x y z Bader charge Bader volume, Å3 Cg-2a 0.0000 0.0000 0.0000 –0.0669 7.5665 Ch1-8k 0.2672 0.8027 0.0721 +0.0337 6.1236 Ch2-8k 0.8319 0.5138 0.0892 –0.0126 5.9542 Ch3-8k 0.6413 0.6073 0.2500 –0.0044 5.9274 The new 2/3 structure is more stable than tP9-carbon by 0.16 eV/atom. It is also dynamically stable, as we can see in Fig. 7. Its lattice parameters are slightly different from those of tP9-carbon: a = b = 4.600 Å, but c = 7.499 Å, approximately three times the value of the c-parameter of the 1/1 structure. Γ Z M Γ A Γ X Wavevector 0 5 F re qu en cy , T H z 10 15 20 25 30 35 40 Fig. 7. Phonon dispersion curves of the 2/3 commensurate modulation of tP9C carbon. The band structure of the 2/3-structure is shown in Fig. 8, and electronic densi- ties of states computed with PBE and HSE06 are shown in Fig. 9. The computed HSE06 band gap is 4.1 eV (much higher than 3.0 eV computed for the tP9 structure). Its hardness is computed to be 60.6 GPa using model [16] and 70.6 with model [42], the computed bulk modulus is 383.6 GPa. The density of this phase of carbon is 3.25 g/cm3. SiC8 compound We have investigated the possibility of replacing one of the sublattices with another element. When we replaced the guest carbon atom by a larger silicon atom, the structure remained dynamically stable (Fig. 10). Just like the host, the guest atoms are 4-coordinate with a noticeably larger bond lengths of 1.70 Å (the normal single C–C bond length is 1.54 Å). Thus, it is natural to place a large atom, such as Si, in the guest sublattice, and we did it for the parent 1/1 structure. The ISSN 0203-3119. Сверхтвердые материалы, 2014, № 4 47 structure has space group P 4 , with two independent 4h Wyckoff positions occupied in the host sublattice by C atoms, with coordinates (0.694, 0.232, 0.241) and (0.165, 0.477, 0.257), and the Si atom in the guest sublattice occupies the 1a site at (0, 0, 0); the lattice parameters are a = b = 4.830 Å and c = 2.522 Å. SiC8 is found to have interesting physical properties. Its bulk modulus is 361.2 GPa; the hardness computed with model [16] is 46.2 GPa, i.e. the material is superhard. The HSE06 [41] band gap is 1.8 eV. This result is interesting for absorption of solar light – with possible applications in photocatalysis. Density of states, calculated at different pressures using the HSE06 functional, is shown in Fig. 11. We can see that the band gap slightly increases with pressure – opposite to the normal tendency, but similar to diamond [49]. The density of SiC8 is 3.49 g/cm3. Γ X M A Γ Z Wavevector –10 0 –5 5 E ne rg y, e V 10 Fig. 8. HSE06 band structure of the 2/3 modulated variant of the tP9 structure. It is interesting to compare energy of the isochemical mixture of diamond-like Si (the ground state of Si) and diamond C with the energy of our SiC8 structure. We find that SiC8 is 0.27 eV/atom less stable than the isochemical mixture of dia- mond-structured Si and C. The enthalpy of formation from true ground states of the elements, diamond-like Si and C-graphite, is 0.38 eV/atom. In the Si–C system, there is a stable phase SiC. We have explored the enthalpy of formation of SiC8 from a mixture SiC + 7C(graphite), and the resulting value is 0.44 eV/atom. Results of Bader analysis are shown in Table 3. One can see a large positive charge on the Si atom. Table 3. Bader charges and in the hypothetical compound SiC8. Space group P 4 , lattice parameters a = b = 4.830 Å and c = 2.522 Å Position x y z Bader charge Bader volume, Å3 Si 0.0000 0.0000 0.0000 +2.3008 5.4078 Ch1 0.6944 0.2326 0.2417 –0.5854 7.5396 Ch2 0.1640 0.4769 0.2575 +0.0102 5.8274 www.ism.kiev.ua/stm 48 –22 –18 –14 –10 –6 –2 2 6 10 Energy, eV 0 2 D en si ty o f s ta te s, s ta te s/ eV ⋅u n it c el l 4 6 8 10 12 14 a –24 –20 –16 –12 –8 –4 0 4 8 12 Energy, eV 0 1 D en si ty o f s ta te s, s ta te s/ eV ⋅u n it c el l 2 3 4 5 6 7 8 b Fig. 9. Electronic density of states of the 2/3 structure computed using PBE (a) and HSE06 (b) functionals. CONCLUSIONS We report a novel family of metastable host–guest structures of carbon, the simplest prototype of which is the tetragonal tP9 structure with 9 atoms in the unit cell. This structure consists of host (8 atoms/cell) and guest (1 atom/cell) sublattices, the guest forming 1D-chains running along the channels of the host structure. It shares similarities with well-known Ba-IV and Rb-IV host–guest structures, which become stable at elevated pressures [22], and exemplifies an extension of such structures to low-coordinate topologies. Theoretical calculations showed that it is a semiconductor with a band gap of 3.0 eV at 0 GPa and hardness ISSN 0203-3119. Сверхтвердые материалы, 2014, № 4 49 70–73 GPa. This structure is 0.55 eV/atom less stable than diamond at atmospheric pressure. Γ Z M Γ A Γ X Wavevector 0 5 F re qu en cy , T H z 10 15 20 25 30 35 Fig. 10. Phonon dispersion curves of SiC8. –26 –22 –18 –14 –10 –6 –2 2 6 10 Energy, eV 0 0.5 D en si ty o f s ta te s, s ta te s/ eV ⋅u ni t ce ll 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 0 GPa 5 GPa 100 GPa Fig. 11. The density of states for host–guest SiC8 compound at 0, 5, 100 GPa computed using the HSE06 hybrid functional. www.ism.kiev.ua/stm 50 Looking at a series of modulations of this host–guest structure, it have been found that the 2/3 modulation gives the lowest energy, lowering the energy by 0.16 eV/atom. This optimal host–guest structure contains 26 atoms in the unit cell and is 0.52 eV/atom less stable than graphite, and 0.39 eV/atom less stable than diamond. Its hardness is 61–71 GPa, and its band gap is 4.1 eV. By replacing carbon atoms in the guest sublattice with Si atoms, a hypothetical SiC8 compound has been obtained, which is 0.27 eV/atom higher in energy than the isochemical mixture of C-diamond and diamond-type Si. This material is pre- dicted to have interesting properties – hardness of 46 GPa and band gap of 1.8 eV. These results show that host–guest structures may appear, at least as metastable phases, not only in metals, but also in non-metallic elements, and may have interesting properties. Such phases, or substitution compounds based on them, may be synthesizable. ACKNOWLEDGEMENTS We thank the National Science Foundation (EAR-1114313, DMR-1231586), DARPA (Grants No. W31P4Q1310005 and No. W31P4Q1210008), and the Government (No. 14.A12.31.0003) and the Ministry of Education and Science of Russian Federation (Project No. 8512) for financial support. Повідомляється про сімейство метастабільних структур господар– гість, прототипом якого є тетрагональна структура tP9 з дев’ятьма атомами в комірці. Вона складається з восьми атомів тетрагонального господаря, що заповнюють канали, орієнтовані вздовж осі с. Структура tP9 аналогічна недавно відкритим Ba-IV- й Rb-IV-типам несумірних структур. Враховуючи модуляцію структури через варіацій співвідношень господар/гість, зроблено висновок, що найбільш стабільний представник цього сімейства структур має відношення гість/господар – 2/3 і 26 атомів в елементарній комірці (просторова група P42/m). Енергія цієї структури на 0,39 еВ/атом вище, ніж алмазу. Ця структура, за прогнозами, повинна мати заборонену зону – 4,1 еВ, об’ємний модуль – 384 ГПа, а твердість – 61–71 ГПа. Через різні локальні стани атомів господаря і гостя розглянуто можливість заміни атомів вуглецю гостьової підґратки атомами Si в прототипі tP9 і вивчені властивості отриманої сполуки SiC8, які, як було виявлено, мають вельми високий об’ємний модуль пружності – 361,2 ГПа і твердість 46,2 ГПа. Ключові слова: теорія функціонала щільності, еволюційний алгоритм, несумірний кристал, карбід кремнію. Сообщается о семействе метастабильных структур хозяин–гость, прототипом которого является тетрагональная структура tP9 с девятью атомами в ячейке. Она состоит из восьми атомов тетрагонального хозяина, заполняющих каналы, ориентированные вдоль оси с. Структура tP9 аналогична недавно открытым Ba-IV- и Rb- IV-типам несоразмерных структур. Учитывая модуляцию структуры из-за вариаций отношения хозяин/гость, сделан вывод, что наиболее стабильный представитель этого семейства структур имеет отношение гость/хозяин – 2/3 и 26 атомов в элементарной ячейке (пространственная группа P42/m). Энергия этой структуры на 0,39 эВ/атом вы- ше, чем алмаза. Эта структура, по прогнозам, должна иметь запрещенную зону – 4,1 эВ, модуль объемного сжатия – 384 ГПа, а твердость – 61–71 ГПа. Из-за различных локаль- ных состояний атомов хозяина и гостя рассмотрена возможность замены атомов угле- рода гостевой подрешетки атомами Si в прототипе tP9 и изучены свойства полученного соединения SiC8, которое, как было обнаружено, имеет весьма высокий модуль объемного сжатия – 361,2 ГПа и твердость 46,2 ГПа. Ключевые слова: теория функционала плотности, эволюционный алго- ритм, несоразмерной кристалл, карбид кремния. 1. Heimann R. B., Evsyukov S. E., Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization // Carbon. – 1997. – 35. – P. 1654–1657. ISSN 0203-3119. Сверхтвердые материалы, 2014, № 4 51 2. Iijima S. Helical microtubules of graphitic carbon // Nature. – 1991. – 354. – P. 56–58. 3. Ekimov E. A., Sidorov V. A. Bauer E. D. et al. Superconductivity in diamond // Ibid. – 2004. – 428. – P. 542–545. 4. Meyer J. C., Geim A. K., Katsnelson M. I. et al. The structure of suspended graphene sheets // Ibid. – 2007. – 446. – P. 60–63. 5. Wang X., Scandolo S., Car R. Carbon phase diagram from ab initio molecular dynamics // Phys. Rev. Lett. – 2005. – 95, art. 185701. 6. Mao W. L., Mao H. K., Eng P. J. et al. Bonding changes in compressed superhard graphite // Science. – 2003. – 302. – P. 425–427. 7. Buchnum M. J., Hoffman R. A. hypothetical dense 3,4-connected carbon net and related B2C and CN2 nets built from 1,4-cyclohexadienoid units // J. Am. Chem. Soc. – 1994. – 116. – P. 11456–11464. 8. Winkler B., Pickard C. J., Milman V. et al. Prediction of a nanoporous sp2-carbon framework structure by combining graph theory with quantum mechanics // Chem. Phys. Lett. – 1999. – 312. – P. 536–541. 9. Li Q., Ma Y., Oganov A. R. et al. Superhard monoclinic polymorph of carbon // Phys. Rev. Lett. – 2009. – 102, art. 175506. 10. Ribeiro F. J., Tangney P., Louie S. G. et al. Structural and electronic properties of carbon in hybrid diamond-graphite structures // Phys. Rev. B. – 2005. – 72, art. 214109. 11. Wang Z.W., Zhao Y.S., Tait K. et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes // Proc. Natl. Acad. Sci. – 2004. – 101. – P. 13699– 13702. 12. Pickard C. J., Needs R. J. Hypothetical low-energy chiral framework structure of group 14 elements // Phys. Rev. B. – 2010. – 81, art. 014106. 13. Umemoto K., Wentzcovitch R. M., Saito S. et al. Body-centered tetragonal C4: a viable sp3 carbon allotrope // Phys. Rev. Lett. – 2010. – 104, art. 125504. 14. Hoffmann R., Hughbanks T., Kertesz M. A hypothetical metallic allotrope of carbon // J. Am. Chem. Soc. – 1983. – 105. – P. 4831–4832. 15. Zhu Q., Oganov A. R., Salvado M. et al. Denser than diamond: ab initio search for superdense carbon allotropes // Phys. Rev. B. – 2011. – 83, art. 193410. 16. Lyakhov A.O., Oganov A. R. Evolutionary search for superhard materials applied to forms of carbon and TiO2 // Ibid. – 2011. – 84, art. 092103. 17. Zhu Q., Zeng Q., Oganov A. R. Systematic search for low-enthalpy sp3 carbon allotropes using evolutionary metadynamics // Ibid. – 2011. – 85, art. 201407. 18. McMahon M. I., Nelmes R. J. High-pressure structures and phase transformations in elemen- tal metals // Chem. Soc. Rev. – 2006. – 35. – P. 943–963. 19. Nelmes R. J., Allan D. R., Mcmahonet M. I. et al. Self-hosting incommensurate structure of barium-IV // Phys. Rev. Lett. – 1999. – 83. – P. 4081–4084. 20. Reed S. K., Ackland G. J. Theoretical and computational study of high-pressure structures in barium // Ibid. – 2000. – 84. – P. 5580–5584. 21. McMahon M. I., Degtyareva O., Nelmes R. J. Pressure dependent incommensuration in Rb- IV // Ibid. – 2001. – 87, art. 055501. 22. Arapan S., Mao H.K., Ahuja R. Prediction of incommensurate crystal structure in Ca at high pressure // Proc. Natl. Acad. Sci. – 2008. – 52. – P. 20627–20630. 23. Oganov A. R., Ma Y. M., Xu Y. et al. Exotic behavior and crystal structures of calcium under pressure // Ibid. – 2010. – 107. – P. 7646–7651. 24. McMahon M. I., Degtyareva O., Nelmes R. J. Ba-IV-type incommensurate crystal structure in group-V metals // Phys. Rev. Lett. – 2000. – 85. – P. 4896–4899. 25. Degtyareva O., McMahon M. I., Nelmes R. J. Pressure-induced incommensurate-to- incommensurate phase transition in antimony // Phys. Rev. B. – 2004. – 70, art. 18419. 26. Fujihisa H., Akahama Y., Kawamura H. et al. Incommensurate structure of phosphorus phase IV // Phys. Rev. Lett. – 2007. – 98, art. 175501. 27. Hejny C., McMahon M. I. Large structural modulations in incommensurate Te-III and Se-IV // Ibid. – 2003. – 91, art. 215502. 28. McMahon M. I, Hejny C., Loveday J. S. et al. Confirmation of the incommensurate nature of Se-IV at pressures below 70 GPa // Phys. Rev. B. – 2004. – 70, art. 054101. 29. Hejny C., Lundegaard L. F., Falconi S. et al. Incommensurate sulfur above 100 GPa // Ibid. – 2005. – 71, art. 020101. 30. Pickard C. J., Needs R. J. Aluminum at terapascal pressures // Nat. Mater. – 2010. – 9. – P. 624–627. www.ism.kiev.ua/stm 52 31. Oganov A. R., Glass C. W. Crystal structure prediction using ab initio evolutionary tech- niques: principles and applications // J. Chem. Phys. – 2006. – 124, art. 244704. 32. Oganov A. R., Lyakhov A. O., Valle M. How evolutionary crystal structure prediction works – and why // Acc. Chem. Res. – 2011. – 44. – P. 227–237. 33. Lyakhov A. O., Oganov A. R., Stoke, H. T. et al. New developments in evolutionary structure prediction algorithm USPEX // Comp. Phys. Comm. – 2013. – 184. – P. 1172–1182. 34. Hohenberg P., Kohn W. Inhomogeneous electron gas // Phys. Rev. B. – 1964. – 136. – P. 864–871. 35. Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects // Phys. Rev. A. – 1965. – 140. – P. 1133–1138. 36. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. – 1996. – 77. – P. 3865. 37. Blochl P. E. Projector augmented-wave method // Phys. Rev. B. – 1994. – 50. – P. 17953– 17978. 38. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method // Ibid. – 1999. – 59. – P. 1758–1775. 39. Kresse G., Furthmller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Ibid. – 1996. – 54. – P. 11169–11186. 40. Togo A., Oba F., Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures // Ibid. – 2008. – 78, art. 134106. 41. Heyd J., Scuseria G. E., Ernzerhof M. Hybrid functionals based on a screened Coulomb potential // J. Chem. Phys. – 2006. – 124, art. 219906. 42. Bader R. F. W. Atoms in Molecules. A Quantum Theory. – Oxford: Oxford University Press, 1990. 43. Tang W., Sanville E., Henkelman G. A grid-based Bader analysis algorithm without lattice bias // J. Phys.: Condens. Matter. – 2009. – 21, art. 084204. 44. Chen X.-Q., Niu H., Li D. et al. Modeling hardness of polycrystalline materials and bulk metallic glasses // Intermetallics. – 2011. – 19. – P. 1275–1281. 45. Hill R. The elastic behavior of a crystalline aggregate // Proc. Phys. Soc. London. – 1952. – 65. – P. 349–354. 46. Voigt W. Lehrbuch der Kristallphysik. – Leipzig: Verl. von B. G. Teubner, 1928. 47. Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedin- gung fur Einkristalle // Z. Angew. Math. Mech. – 1929. – 9. – S. 49–58. 48. Oganov A. R., Chen J., Gatti C. et al. Ionic high-pressure form of elemental boron // Nature. – 2009. – 457. – P. 863–867. 49. Fahy S., Chang K. J, Louie S. G. Pressure coefficients of band gaps of diamond // Phys. Rev. B. – 1987. – 35. – P. 5856–5859. Department of Geosciences, Received 15.03.14 State University of New York Center for Materials by Design, Institute for Advanced Computational Science, State University of New York Moscow Institute of Physics and Technology Northwestern Polytechnical University, Xi’an, P. R. China << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.4 /CompressObjects /Off /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.1000 /ColorConversionStrategy /LeaveColorUnchanged /DoThumbnails true /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams true /MaxSubsetPct 100 /Optimize false /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Remove /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages false /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth 8 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /FlateEncode /AutoFilterColorImages false /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages false /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth 8 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /FlateEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages false /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) /RUS () >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /NoConversion /DestinationProfileName () /DestinationProfileSelector /NA /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice