О нестационарной осесимметричной задаче для упругого полупространства при смешанных граничных условиях
Рассматривается задача определения напряженно-деформированного состояния упругого полупространства, на границе которого действует нестационарная нормальная нагрузка. Формулируется смешанная краевая задача, решение которой строится с применением интегральных преобразований Лапласа и Ханкеля. Выполне...
Saved in:
| Published in: | Доповіді НАН України |
|---|---|
| Date: | 2016 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Видавничий дім "Академперіодика" НАН України
2016
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/126184 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | О нестационарной осесимметричной задаче для упругого полупространства при смешанных граничных условиях / В.Д. Кубенко // Доповіді Національної академії наук України. — 2016. — № 12. — С. 22-28. — Бібліогр.: 8 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Рассматривается задача определения напряженно-деформированного состояния упругого полупространства, на границе которого действует нестационарная нормальная нагрузка. Формулируется смешанная краевая задача, решение которой строится с применением интегральных
преобразований Лапласа и Ханкеля. Выполнено точное обращение преобразований. Как результат, получено аналитическое решение задачи, которое определяет перемещение в произвольной точке оси симметрии в произвольный момент времени.
Розглядається задача визначення напружено-деформівного стану пружного півпростору, на границі якого
діє нестаціонарне нормальне навантаження. Формулюється змішана крайова задача, рішення якої будується з застосуванням інтегральних перетворень Лапласа і Ханкеля. Виконано точне обертання перетворень. Як результат, отримано аналітичний розв'язок задачі, що визначає переміщення в довільній точці
осі симетрії в довільний момент часу.
The problem of determining a stress-strain state of the elastic half-space under a nonstationary normal loading is
considered. A mixed boundary-value problem is formulated, and its solution is constructed with the use of the Laplace
and Hankel integral transformations. The exact inversion of the transformations is executed. As a result, the analy
tical solution is obtained, and it determines a normal displacement at an arbitrary point of the axis of symmetry at
an arbitrary moment of time.
|
|---|---|
| ISSN: | 1025-6415 |