Машинно-навчальні методи розпізнавання іменованих сутностей тексту

У статті розглянуто машинно-навчальні методи розпізнавання іменованих сутностей тексту. Розглянуто дві базові моделі машинного навчання – наївна модель Байєса та модель умовних випадкових полів, застосовані для вирішення задачі ідентифікації та аналізу іменованих сутностей. Також досліджено модель,...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Проблеми програмування
Дата:2016
Автор: Марченко, О.О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут програмних систем НАН України 2016
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/126400
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Машинно-навчальні методи розпізнавання іменованих сутностей тексту / О.О. Марченко // Проблеми програмування. — 2016. — № 2-3. — С. 150-157. — Бібліогр.: 8 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:У статті розглянуто машинно-навчальні методи розпізнавання іменованих сутностей тексту. Розглянуто дві базові моделі машинного навчання – наївна модель Байєса та модель умовних випадкових полів, застосовані для вирішення задачі ідентифікації та аналізу іменованих сутностей. Також досліджено модель, в якій для мультикласифікації іменованих сутностей текстів використовуються корегуючі вихідні коди. В роботі описано процес навчання та результати експериментів з тестування побудованих класифікаторів. Умовні випадкові поля перевершили інші моделі за оцінками точності та надійності роботи методу. В статье исследуются машинно-обучаемые методы распознавания именованных сущностей текста. Рассмотрены две базовые модели машинного обучения – наивная модель Байеса и модель условных случайных полей, которые были использованы для решения задачи идентификации и анализа именованных сущностей. Также исследована модель, в которой для мульти-классификации именованных сущностей текстов используются корректирующие выходные коды. В работе описаны процесс обучения и результаты экспериментов по тестированию построенных классификаторов. Условные случайные поля превзошли другие модели по оценкам точности и надежности работы метода. The article describes machine learning methods for the named entity recognition. To build named entity classifiers two basic models of machine learning, The Naїve Bayes and Conditional Random Fields, were used. A model for multi-classification of named entities using Error Correcting Output Codes was also researched. The paper describes a method for classifiers' training and the results of test experiments. Conditional Random Fields overcome other models in precision and recall evaluations.
ISSN:1727-4907