Chromosomal damage as prognosis marker in cervical carcinogenesis

Cancer of the uterine cervix is the third most common cancer in women worldwide and the most common cancer among Mexican and Latin American women. Risk factors that have been associated with the development of cervical intraepithelial neoplasia suggest that Human Papillomavirus (HPV) types 16, 18, 3...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Цитология и генетика
Дата:2014
Автори: Cortés-Gutiérrez, E., Dávila-Rodríguez, M., Cerda-Flores, R.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут клітинної біології та генетичної інженерії НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/126654
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Chromosomal damage as prognosis marker in cervical carcinogenesis / E. Cortés-Gutiérrez, M. Dávila-Rodríguez, R.M. Cerda-Flores // Цитология и генетика. — 2014. — Т. 48, № 3. — С. 54-63. — Бібліогр.: 86 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-126654
record_format dspace
spelling Cortés-Gutiérrez, E.
Dávila-Rodríguez, M.
Cerda-Flores, R.M.
2017-11-29T19:55:50Z
2017-11-29T19:55:50Z
2014
Chromosomal damage as prognosis marker in cervical carcinogenesis / E. Cortés-Gutiérrez, M. Dávila-Rodríguez, R.M. Cerda-Flores // Цитология и генетика. — 2014. — Т. 48, № 3. — С. 54-63. — Бібліогр.: 86 назв. — англ.
0564-3783
DOI: 10.3103/S0095452714030049
https://nasplib.isofts.kiev.ua/handle/123456789/126654
Cancer of the uterine cervix is the third most common cancer in women worldwide and the most common cancer among Mexican and Latin American women. Risk factors that have been associated with the development of cervical intraepithelial neoplasia suggest that Human Papillomavirus (HPV) types 16, 18, 31, and 33 entail a high risk of developing a malignancy of this type. The accumulation of genetic alterations allows the growth of neoplastic cells; chromosomal instability is an event that occurs in the precancerous stages. The candidate cancer risk biomarkers include cytogenetic endpoints, such as chromosomal aberrations, sister chromatid exchange, micronuclei, and the outcomes of comet assay and DNA breakage detection-fluorescence in situ hybridization. The patterns identified in these cytogenetic studies indicate that chromosomal instability is a transient and chromosomally unstable intermediate in the development of cervical lesions. In this context, the mechanisms that may underlie the progressive increase in genetic instability in these patients seem to be related directly to HPV infection. The studies discussed in this paper show that chromosomal instability may serve as a biomarker by predicting the progression of cervical intraepithelial neoplasia. Nevertheless, these results should be validated in larger, prospective studies.
Рак шейки матки является третьим по распространенности в мире типов рака у женщин и наиболее часто встречающимся у женщин Мексики и Латинской Америки. Факторы риска, связанные с развитием интраэпителиальной цервикальной неоплазии, предполагают, что папилломавирус человека (HPV) типов 16, 18, 31 и 33 влечет за собой высокий риск развития опухолей этого типа. Накопление генетических изменений делает возможным рост опухолевых клеток, хромосомная нестабильность является событием, которое предшествует предраковым стадиям. Возможные биомаркеры риска опухоли включают цитогенетические критерии, такие как хромосомные аберрации, обмен сестринских хроматид, микроядра, и заканчиваются Comet-анализом и детекцией поломок ДНК с помощью флюоресцентной гибридизации in situ. Образцы, идентифицированные в таких цитогенетических исследованиях, показывают, что хромосомная нестабильность является транзиентным промежуточным звеном в развитии цервикальных нарушений. В этой связи механизмы, которые могут лежать в основе прогрессирующей генетической нестабильности у таких пациентов, кажутся непосредственно связанными с инфекцией HPV. Настоящее исследование показывает, что хромосомная нестабильность может служить биомаркером для предсказания развития интраэпителиальной цервикальной неоплазии, тем не менее эти результаты должны быть оценены в более масштабных исследованиях.
en
Інститут клітинної біології та генетичної інженерії НАН України
Цитология и генетика
Обзорные статьи
Chromosomal damage as prognosis marker in cervical carcinogenesis
Хромосомные повреждения как прогнозные маркеры карценогенеза шейки матки
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Chromosomal damage as prognosis marker in cervical carcinogenesis
spellingShingle Chromosomal damage as prognosis marker in cervical carcinogenesis
Cortés-Gutiérrez, E.
Dávila-Rodríguez, M.
Cerda-Flores, R.M.
Обзорные статьи
title_short Chromosomal damage as prognosis marker in cervical carcinogenesis
title_full Chromosomal damage as prognosis marker in cervical carcinogenesis
title_fullStr Chromosomal damage as prognosis marker in cervical carcinogenesis
title_full_unstemmed Chromosomal damage as prognosis marker in cervical carcinogenesis
title_sort chromosomal damage as prognosis marker in cervical carcinogenesis
author Cortés-Gutiérrez, E.
Dávila-Rodríguez, M.
Cerda-Flores, R.M.
author_facet Cortés-Gutiérrez, E.
Dávila-Rodríguez, M.
Cerda-Flores, R.M.
topic Обзорные статьи
topic_facet Обзорные статьи
publishDate 2014
language English
container_title Цитология и генетика
publisher Інститут клітинної біології та генетичної інженерії НАН України
format Article
title_alt Хромосомные повреждения как прогнозные маркеры карценогенеза шейки матки
description Cancer of the uterine cervix is the third most common cancer in women worldwide and the most common cancer among Mexican and Latin American women. Risk factors that have been associated with the development of cervical intraepithelial neoplasia suggest that Human Papillomavirus (HPV) types 16, 18, 31, and 33 entail a high risk of developing a malignancy of this type. The accumulation of genetic alterations allows the growth of neoplastic cells; chromosomal instability is an event that occurs in the precancerous stages. The candidate cancer risk biomarkers include cytogenetic endpoints, such as chromosomal aberrations, sister chromatid exchange, micronuclei, and the outcomes of comet assay and DNA breakage detection-fluorescence in situ hybridization. The patterns identified in these cytogenetic studies indicate that chromosomal instability is a transient and chromosomally unstable intermediate in the development of cervical lesions. In this context, the mechanisms that may underlie the progressive increase in genetic instability in these patients seem to be related directly to HPV infection. The studies discussed in this paper show that chromosomal instability may serve as a biomarker by predicting the progression of cervical intraepithelial neoplasia. Nevertheless, these results should be validated in larger, prospective studies. Рак шейки матки является третьим по распространенности в мире типов рака у женщин и наиболее часто встречающимся у женщин Мексики и Латинской Америки. Факторы риска, связанные с развитием интраэпителиальной цервикальной неоплазии, предполагают, что папилломавирус человека (HPV) типов 16, 18, 31 и 33 влечет за собой высокий риск развития опухолей этого типа. Накопление генетических изменений делает возможным рост опухолевых клеток, хромосомная нестабильность является событием, которое предшествует предраковым стадиям. Возможные биомаркеры риска опухоли включают цитогенетические критерии, такие как хромосомные аберрации, обмен сестринских хроматид, микроядра, и заканчиваются Comet-анализом и детекцией поломок ДНК с помощью флюоресцентной гибридизации in situ. Образцы, идентифицированные в таких цитогенетических исследованиях, показывают, что хромосомная нестабильность является транзиентным промежуточным звеном в развитии цервикальных нарушений. В этой связи механизмы, которые могут лежать в основе прогрессирующей генетической нестабильности у таких пациентов, кажутся непосредственно связанными с инфекцией HPV. Настоящее исследование показывает, что хромосомная нестабильность может служить биомаркером для предсказания развития интраэпителиальной цервикальной неоплазии, тем не менее эти результаты должны быть оценены в более масштабных исследованиях.
issn 0564-3783
url https://nasplib.isofts.kiev.ua/handle/123456789/126654
citation_txt Chromosomal damage as prognosis marker in cervical carcinogenesis / E. Cortés-Gutiérrez, M. Dávila-Rodríguez, R.M. Cerda-Flores // Цитология и генетика. — 2014. — Т. 48, № 3. — С. 54-63. — Бібліогр.: 86 назв. — англ.
work_keys_str_mv AT cortesgutierreze chromosomaldamageasprognosismarkerincervicalcarcinogenesis
AT davilarodriguezm chromosomaldamageasprognosismarkerincervicalcarcinogenesis
AT cerdafloresrm chromosomaldamageasprognosismarkerincervicalcarcinogenesis
AT cortesgutierreze hromosomnyepovreždeniâkakprognoznyemarkerykarcenogenezašeikimatki
AT davilarodriguezm hromosomnyepovreždeniâkakprognoznyemarkerykarcenogenezašeikimatki
AT cerdafloresrm hromosomnyepovreždeniâkakprognoznyemarkerykarcenogenezašeikimatki
first_indexed 2025-11-26T00:10:48Z
last_indexed 2025-11-26T00:10:48Z
_version_ 1850596006811402240
fulltext ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 354 Cancer of the uterine cervix is the third most common cancer in women worldwide and the most common cancer among Mexican and Latin American women. Risk factors that have been associated with the development of cervical intraepi- thelial neoplasia suggest that Human Papillomavirus (HPV) types 16, 18, 31, and 33 entail a high risk of developing a malignancy of this type. The accumulation of genetic alterations allows the growth of neoplastic cells; chromo- somal instability is an event that occurs in the precancer- ous stages. The candidate cancer risk biomarkers include cytogenetic endpoints, such as chromo somal aberrations, sister chromatid exchange, micronuclei, and the outcomes of comet assay and DNA breakage detection-fluorescence in situ hybridization. The patterns identified in these cy- togenetic studies indicate that chromosomal instability is a transient and chromosomally unstable intermediate in the development of cervical lesions. In this context, the mecha- nisms that may underlie the progressive increase in genetic instability in these patients seem to be related directly to HPV infection. The studies discussed in this paper show that chromosomal instability may serve as a biomarker by pre- dicting the progression of cervical intraepithelial neoplasia. Nevertheless, these results should be validated in larger, prospective studies. Key words: chromosomal instability, cervical cancer, bio- marker. Introduction. Cancer of the uterine cervix is the third most common cancer in women worldwide and the most common cancer among Mexican and Latin American women [1]. Precancerous lesions of the cervix, com- monly designated «dysplasia», present a complex problem of progression and regression because of their biological behavior. Dysplastic lesions of the cervix are morpho- logically classified into the following stages: mild cervical intraepithelial neoplasia (CIN 1), moderate (CIN 2), and severe (CIN 3). According to the Bethesda System for reporting cervical/vaginal cytological diagnoses [2], the lesions are classified as squamous intraepithelial le- sions (SIL), which are either low-grade (LG-SIL), corre- sponding to human papillomavirus (HPV) infection and CIN 1, or high-grade (HG-SIL), corresponding to CIN 2 and CIN 3. Risk factors that have been associated with the development of CIN suggest that HPV types 16, 18, 31, and 33 entail a high risk of developing a malignancy of this type. Considering that carcinogenesis is a complex stepwise process and that the accumulation of genetic alterations allows the growth of neoplastic cells, chromosomal insta- bility is an event that occurs in the precancerous stages. The development and validation of biomarkers that can anticipate the clinical diagnosis and suggest cancer prevention interventions in populations at risk are among the most promising strategies for cancer prevention. The candidate cancer risk biomarkers include cytogenetic endpoints, such as chromosomal aberrations [3], sister chromatid exchange (SCE) [4], micronuclei (MN) [5], and the outcomes of comet assay [6, 7] and DNA break- age detection-fluorescence in situ hybridization (DBD- FISH) [8]. Chromosomal aberrations. Numerical changes in spe- cific chromosomes (aneusomy) can involve a gain (e.g., trisomy) or loss (e.g., monosomy) with respect to the normal condition (disomy). A misdivision gives rise to an amplification of the whole genome (polyploidy) [9] and structural anomalies (e.g., deletions, translocations, and isochromosomes). Numerical or structural chromosomal anomalies, or a combination of the two, are related events that oc- cur during the early stages and progression of cervical carcinogenesis [10, 11]. The numerical and/or structural deviations of some chromosomes (i.e., monosomy and polysomy of chromosomes 1, 3, and X) are routinely used as positive genetic biomarkers in the diagnosis of cervical cancer and prediction of disease progression ОБЗОРНЫЕ СТАТЬИ E.I. CORTÉS-GUTIÉRREZ 1, M.I. DÁVILA-RODRÍGUEZ 1, R.M. CERDA-FLORES 2 1 Department of Genetics. Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social. Monterrey, México 2 Facultad de Enfermería, Universidad Autónoma de Nuevo León. Monterrey, México E-mail: elvacortes@cibinmty.net CHROMOSOMAL DAMAGE AS PROGNOSIS MARKER IN CERVICAL CARCINOGENESIS © E.I. CORTÉS-GUTIÉRREZ, M.I. DÁVILA-RODRÍGUEZ, R.M. CERDA-FLORES, 2014 ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 3 55 Chromosomal damage as prognosis marker in cervical carcinogenesis [12–14]. Structural anomalies and numerical anoma- lies (aneusomy) of chromosome 1 have been described as the most frequent karyotypic changes in cervical cancer. It is possible that one or more of the tumor suppressor genes (PAX7, FBG3, ARH1, NEK2, RGL, and ARCH) located on chromosome 1 are involved in the development or progression of cervical cancer [15]. Aneusomy in chromosomes 1, 7, 8, 11, 17, and X have also been reported based on fluorescence in situ hybridization (FISH) and interphase cytogenetic find- ings [16–21]. In addition to the primary structural and numerical aberrations that are responsible for the initia- tion of carcinogenesis, new or secondary chromosomal abnormalities in the karyotype (e.g., stickiness, pulveri- zation, chromatin extraction, chromatid gap, chromatid constriction, isochromatid break, endomitosis, and ring chromosomes) of a patient may appear as signaling a change usually to a more aggressive disorder [22]. An increased frequency of spontaneous chromosome aber- rations was observed among patients with cervical pre- cancerous lesions [23]. Sister chromatid exchange (SCE) is a reciprocal ex- change between sister chromatids. SCEs are generally visualized by exposing cells (in vitro or in vivo) to 5-bro- modeoxyuridine for two cell cycles and allowing subse- quent differential staining of sister chromatids. Exchanges are detected at switches in stained regions between sister chromatids. The molecular mechanisms underlying SCE are not known fully, but they occur after exposure to vari- ous genotoxic agents and are believed to indicate DNA damage [24]. The SCE phenomenon is widely used as a reliable indicator of chromosome (DNA) instability [25] and has been suggested as a preclinical marker for the breast cancer gene [26]. The performance of the SCE test to evaluate the genomic damage in patients with cervical carcinoma is more practical in cultured lymphocytes than in solid tumors because of the difficulties in obtaining surgical specimens. The use of lymphocytes is based on the as- sumption that there should be an association between the extent of chromosomal damage in lymphocytes and in tumor cells [27]. A significant increase of the number of SCEs was reported previously in patients with cancer of the uterine cervix [28–33]; however, other studies have not shown significant differences [34]. These results sug- gest that the frequency of SCE is higher in patients with cervical carcinoma than in controls, in studies with a statistical power of 0.80. It could be assumed that these patients show a certain amount of chromosome instabil- ity. This finding is in agreement with those reported by other authors [27–33]. High values of statistical power (0.99 to 1.00) were achieved in all references listed in Ta- ble I (computed by the authors using the Stata software) [34]. Conversely, Adhvaryu et al. [35] did not find that SCE was a significant marker in cervical cancer patients, possibly because of the low statistical power (1 – = = 0.57) in the experimental design. SCEs are associated with cervical cancer. The incon- sistency of the results of other studies might be attribut- able to the low statistical power in the experimental de- sign of those studies; however, the usefulness of increased SCE levels as a preclinical marker to identify women at a high risk of developing cancer needs to be ascertained in follow-up studies of precancerous lesions with high levels of SCE. Micronuclei. A micronucleus (MN) is formed by chromosomes or chromosome segments that fail to be in- corporated in the nuclei during cell division. MN can be generated through various processes, i.e., chromosomal damage and chromosome loss (aneuploidy). During the past few decades, MN has generally been used as a bio- marker of chromosomal damage, genome instability, and cancer risk, integrating acquired mutations and genetic susceptibility toward mutations [36]. Therefore, increased MN frequency is expected in preneoplastic conditions, which has been demonstrated [37–41]. The role of MN in various steps of carcinogenesis has been substantiated by investigators and it has clearly been shown that the level of baseline chromosome damage is much higher in untreated cancer patients than in cancer-free controls [42]. Therefore, MN scoring could be used as a biomarker to identify various preneoplastic conditions much earlier Table 1. Sister chromatid exchange frequencies in women with carcinoma of the uterine cervix in studies with various statistical powers [34] Indications. N – number of patients studied; P < 0.05; C – control, P – patients, X ± SD – average ± standard deviation. Author N SCE (X ± SD) Statis- tical power Mitra et al. [28] Murty et al. [29] Adhvaryu et al. [35] Yokota et al. [32] Lukovic et al. [30] Dhillon et al. [31] Capalash et al. [33] Cortés-Gutiérrez et al. [34] 13 11 46 43 13 13 35 18 21 19 14 20 30 15 28 28 10.05 ± 2.35 (C)* 6.95 ± 1.53 (P) 10.15 ± 2.49 (C)* 7.55 ± 2.24 (P) 9.68 ± 0.97 (C) 8.91 ± 1.15 (P) 10.00 ± 1.80 (C)* 7.60 ± 0.80 (P) 8.92 ± 1.47 (C)* 6.94 ± 1.00 (P) 9.44 ± 1.27 (C)* 6.09 ± 1.07 (P) 7.18 ± 1.23 (C)* 4.68 ± 1.82 (P) 7.80 ± 1.05 (C)* 6.98 ± 1.13 (P) 0.99 1.00 0.57 1.00 0.99 1.00 1.00 0.80 ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 356 E.I. Cortés-Gutiérrez, M.I. Dávila-Rodríguez, R.M. Cerda-Flores than the manifestations of clinical features and might specifically be exploited in the screening of high-risk populations for a specific type of cancer [43, 44]. For these reasons, the prevalence of MN in epithelial cells has been considered a potential tissue-specific indicator of cancer risk [43, 44]. Occasional studies have shown increased MN frequency in invasive cervical cancer and researchers have suggested that the MN score in exfo- liated cervical cells may be an additional criterion for establishing cervical cancer risk [37, 45]. However, there are only a limited number of studies on MN scoring for the assessment of cervical cancer risk [37, 45] and on MN scoring in cervical preneoplastic and neoplastic conditions [11, 46]. Accordingly, an analysis of MN in Table 2. Micronuclei frequencies in women with cervical neoplasic lesions as reported in the literature Author N Diagnostic No. cells studied MN Conclusion Samanta et al. [55] Samanta et al. [54] Aires et al. [53] Campos et al. [52] Leal-Garza et al. [47] Cerqueira et al. [51] Chakrabarti et al. [50] 30 23 40 40 30 38 22 10 12 10 27 35 10 25 16 15 10 10 10 10 45 113 24 14 4 48 33 32 6 ASCUS CIN Control Inflammatory ASC-US LG-SIL HG-SIL Control Inflammatory LG-SIL HG-SIL Control Inflammatory CIN 1 CIN 2 CIN 3 Control LG-SIL HG-SIL Invasive Control Inflammatory LG-SIL HG-SIL Cancer Control Inflammatory LG-SIL HG-SIL 30,000 23,000 40,000 40,000 30,000 38,000 20,000 24,000 20,000 54.000 35,000 10,000 25,000 16,000 15,000 10,000 10,000 10,000 10,000 145,388 345,235 65,171 43,086 10589 24,000 16,500 16,00 300 2.87 ± 2.21* 8.35 ± 6.45 1.05 ± 1.59* 0.42 ± 0.71 2.87 ± 2.21 4.74 ± 5.62 19.73 ± 17.18 3** 7 8 61 1.3 ± 1.4* 7.2 ± 9.6 4.3 ± 4.3 10.6 ± 5.3 22.7 ± 11.9 3.05* 7.1 9.7 14.0 27** 166 38 47 14 1.91** 3.80 3.5 4.0 MN score may be helpful in identifying the true CIN cases that are mislabeled as ASCUS on cervical smear. In future, MN score can be used as an additional biomarker in cervical cancer screening MN scoring on the epithelial cells of cervix could be used as a biomarker in cancer scre- ening. This is an easy, simple, reliable, repro- ducible and objective test and can be done on routinely stained smears MN test and Papanicolaou test may be both utilized for screening women who are at risk of developing cervical cancer The prevalence of MN in exfoliated uterine cervical cells was greater in the patients with one or more risk factors for cancer than in the patients without risk factors A positive linear trend between the MN fre- quency and increased cervical cancer risk. After being validated, MN could be used as screening and annual PAP test and as part of cancer staging MN testing would be helpful in monitoring smokers with cervical intraepithelial lesions The rising frequency of MN in exfoliated ce- rvical cells reflects a sustained mutagenesis in cervical epithelium Indications. N – number of cells studied; ASCUS – Atypical Cells of Undetermined Significance; CIN – Cervical Intraepithelial Neoplasia; LG-SIL – low-grade squamous intraepithelial lesion; HG-SIL – high-grade squamous intraepithelial lesion. * Frequencies of MN/1000 cells. ** Frequencies of MN/100 cells. ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 3 57 Chromosomal damage as prognosis marker in cervical carcinogenesis peripheral blood lymphocytes (PBLs) revealed the pres- ence of a correlation between MN frequency and grade of cervical lesions [47] and provided evidence that MN frequency in PBLs is a predictive biomarker of cancer risk within a population of healthy subjects [48]. The similarity between the level of chromosome dam- age in surrogate tissues, such as oral mucosa or PBLs, and the corresponding damage in cancer-prone tissues provided the rationale for the use of these biomarkers as markers of cancer risk [49]. Several studies reported an association between MN frequency and progression of precursor lesions of cervi- cal cancer [46, 47, 50–54]; however, the elevation in the number of these structures in women with HG-SIL did not reach significance. Samanta et al. [55] reported a significant increase of MN in CIN lesions compared with Atypical Cells of Undetermined Significance (Table 2). A recent study [56] provided strong evidence that MN frequency assessed in the PBLs of disease-free subjects is a good predictor of cancer death risk, as evaluated in a nested case-control study performed 14 years after the original recruitment. In particular, the high reliability and low cost of the micronucleus assay has contributed to the worldwide suc- cess and adoption of this biomarker for in vitro and in vivo studies of genome damage in cervical neoplasia [57]. Comet assay. The comet or single-cell gel electropho- resis (SCGE) assay is now widely accepted as a standard method for the assessment of DNA damage in individual cells. It has been used in a wide variety of applications, including human biomonitoring, genotoxicology, and ecological monitoring, and as a tool to investigate DNA damage and repair in various cell types. It can be used to detect the DNA damage in individual cells and to assess the presence of double-stranded breaks, single-stranded breaks, and alkali-labile sites [6].The sensitivity of the SCGE assay and its ability to measure DNA damage in individual cells have rendered it a rapid tool that is use- ful in addressing a wide range of questions in biology, medicine, and genetic toxicology. Several studies have shown that basal DNA damage is increased in PBLs of patients suffering from a variety of cancers, including head and neck, breast, renal, es- ophageal, bladder, ovarian, and lung cancer. The authors of many of these studies, as well as other studies, have also extracted PBLs from cancer patients (usually prior to radiotherapy or chemotherapy) and exposed them to DNA-damaging agents in vitro, to assess whether the susceptibility to DNA damage and subsequent repair ca- pacity in these cells are significantly different from those observed in control samples [6]. A direct association between genomic damage in cer- vical epithelial cells and the progression of LG-SIL to HG-SIL has been demonstrated in two studies [58, 59]. The SCGE assay may serve as a novel tool to predict the fate of cervical dysplasia; however, further standardiza- tion and experimental validation studies are needed. DNA breakage detection-fluorescence in situ hybridi- zation (DBD-FISH). This technique is a new procedure that allows the cell-by-cell detection and quantification of DNA breakage in the whole genome or within spe- cific DNA sequences. Cells embedded in an inert agarose matrix on a slide are lysed to remove membranes and proteins and the remaining nucleoids are subjected to controlled denaturation with an alkali. The alkali trans- forms DNA breaks into restricted single-stranded DNA (ssDNA) motifs, which can be detected via hybridization with specific or whole-genome fluorescent DNA probes. As the number of DNA breaks increases in a target region, so do the amounts of ssDNA produced and probes hy- bridized, resulting in a more intense FISH signal, which can be quantified using image analysis systems [60–62]. Moreover, the alkaline treatment may break the sugar- phosphate backbone at basic sites or at sites with deoxyri- bose damage, transforming these lesions into DNA breaks that are also converted into ssDNA. DNA damage levels may be a consequence of the torsional stress on DNA loops associated with tight chromatin packing, may vary among cell types in conventionally conformed genomes (e.g., sperm and lymphocytes) [63], and may change if the cell is under stress, such as in the presence of a viral infection. DNA damage is a product of external stressors, which also act on the genome [64]. It may also be a consequence of the torsional stress on DNA loops that is associated with tight chromatin packing. Abundant damage has been found in the chromatin of condensed mitotic chromo- somes [64]. In addition, the exposure of DNA to con- stant tension above a critical level leads to its unwinding [65]. Although the molecular biology and significance of constitutive DNA damage are not well understood, some observations support the idea that these genomic regions escape the normal DNA configuration and may be tran- sient structural features of cells. Even under homeostatic cell conditions, the presence of DNA breakage may vary among cell types [63]. It is noteworthy that the applica- Table 3. Comparison of the integrated density (ID) after fluorescence densitometry, in cervical epithelial cells of control women, women with LG-SIL, and women with HG-SIL, as assessed using DBD–FISH [70] Indications. N – number of cells studied; ID – fluo- rescence area × fluorescence intensity; a Different to cont- rol (p = 0.0001); b Different to LG-SIL (p = 0001); c Different to HG-SIL (p = 0.0001). Group N Number of studied cells ID (X ± SD) Control LG-SIL HG-SIL 10 10 10 500 500 500 38 E7 ± 70 E7 b,c 926 E7 ± 1926 E7 a,c 4339 E7 ± 3161 E7 a,b ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 358 E.I. Cortés-Gutiérrez, M.I. Dávila-Rodríguez, R.M. Cerda-Flores tion of a whole-genome probe to other somatic cells does not yield a homogeneous background DBD-FISH signal, as certain chromatin regions are more strongly labeled. In human leukocytes, the DBD-FISH areas with a more in- tense background visualized using a whole-genome probe corresponded to areas containing 5 bp satellite DNA sequences [66]. In mouse splenocytes, the background areas corresponded to repetitive DNA satellite sequences located in pericentromeric regions [67], whereas in Chi- nese hamster cells, they corresponded to pericentromeric interstitial telomeric-like DNA sequences [68]. Their presence is not limited to mammalian species, as they have also been found in insects [69]. Cortés-Gutiérrez et al. [70] reported that LG-SIL patients exhibited a hybridization signal that was 20 times greater than the signal observed in control individuals, which reflected the basal level of DNA damage detected, and that HG-SIL patients exhibited a hybridization signal that was 100 times greater than the basal control signal (Table 3). The DBD-FISH technique is easily applicable to cer- vical scrapings and provides prompt results that are easy to interpret; however, these results need to be validated in larger prospective studies. Genomic instability in cervical cancer. The possible mechanisms that may explain the progressive increase of DNA damage in patients with cervical neoplasia include: 1) metabolic stress due to tumor growth; 2) a «clasto- genic» product released by tumor cells; 3) micronutrient deficiencies, such as folate and vitamin B12 deficiencies [71, 72], and HPV infection. HPV DNA can be detected in 95–100 % of cervical cancer specimens and it has been called a «necessary cause» of cervical cancer [4, 73]. Alva- rez-Rosero et al. [74] observed a correlation between the presence of high-risk HPV infection in cervical cells and the induction of genomic instability (chromosomal aber- rations) in lymphocytes. Similarly, Cortés-Gutiérrez et al. [75] reported that women with HPV infection had a higher MN frequency in cervical cells. A chromosomal profile of high-grade cervical intraepithelial neoplasia was related to duration of preceding high-risk HPV infection [76]. Mechanistically, chromosome breakage in HPV-on- coprotein-expressing cells probably increases the cellular susceptibility to DNA damage or the defective repair Table 4. Classic cytogenetic tests as candidate biomarkers of cervical cancer risk Cytogenetic test Sample (tissue) Advantages Limitations Validations Chromosomal abnormalities SCE MN Comet assay Lymphocytes Lymphocytes Lymphocytes Cervical epithelium Lymphocytes Cervical epithelium Indicator chromosomal in- stability Sensible indicator chromo- somal instability Easy, simple, reliable, repro- ducible, objective, and low cost No required cellular culture Easy, simple, reliable, repro- ducible, objective, and low cost Sensitive, rapid and versatile Sensitive, rapid and versatile. No required cellular culture Required cellular cul- ture Laborious results in- terpretation Required cellular cul- ture Laborious results in- terpretation Required cellular cul- ture Limited number of stu- dies in cervical pre- neoplastic lesions [11, 37, 45, 46] Required fluorescence equipment. Few studied in dys- plasias [58, 59] Inconsistency of the re- sults [10–23] The inconsistency of the results [28–34] Strong evidence of good predictor of cancer death risk [56] Taking into account the role of possible confoun- ders and effect modifiers Consistency of results Validation and detailed follow up studies are re- quired Experimental validation, standardization and in- terpretation are needed Validation and detailed follow up studies are re- quired ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 3 59 Chromosomal damage as prognosis marker in cervical carcinogenesis of DNA damage as a consequence of reduced p53 or pRB function [77]. The HPV-16 E7 oncoprotein induces centrosome abnormalities, thereby disrupting mitotic fi- delity and increasing the risk for chromosome misseg- regation and aneuploidy. In addition, expression of the high-risk HPV E7 oncoprotein stimulates DNA replica- tion stress, which is a potential source of DNA breakage and structural chromosomal instability [78, 79]. Unre- paired, broken DNA can promote gene translocations or gene amplifications/deletions, which may provide a growth advantage to cells through gain of oncogenes or loss of tumor suppressors. This chromosomal instability may promote the development of cells with numerical and structural aberrations in chromosomes 1, 3, 5, 11, and 17 [12, 74, 80], which are critical factor for cervi- cal carcinoma development and malignant progression [12, 13]. Several lines of evidence show that expression of HPV-16 E6 and E7 can independently induce structural chromosomal instability using the comet assay [77]. The induction of chromosomal instability is an emer- ging topic in viral tumorigenesis in humans and is as- sociated with high-risk HPV [81], hepatitis B virus [82], Kaposi’s sarcoma herpesvirus [83], and human T-cell leukemia virus type 1 (HTLV-1) [84]. The level of DNA damage in the genome as a structural feature of the chro- matin may be unbalanced after exposure of cells to stress, such as a viral infection. Several studies have reported changes in chromatin organization during carcinogen- esis and the subsequent association of distorted DNA- binding proteins with the nuclear matrix, which may have a functional role in chromatin organization and gene regulation [85]. An increase in the incidence of DNA single breakage (dsb), which is mediated by Ku70 deple- tion, is associated with HPV-16 episomal loss in cervical keratinocytes and with a new integration event. Normal levels of host DNA repair proteins, including Ku70, may protect against such events by preventing the genera- tion of host dsb and linearized viruses. Interestingly, the HPV-16 E7 protein may play a direct role in inducing integration by interference with the nonhomologous end joining (NHEJ) pathway. Expression of HPV-16 E7 in the HPV-negative cervical keratinocyte cell line C33A resulted in the upregulation of the Ku70-binding pro- tein [86], which may interfere with normal NHEJ and increase the frequency of dsb. Despite the well known function of HPV-16 E7 to induce DNA damage, the precise source of DNA double strand breaks remains poorly understood. Clinical significance. From a clinical perspective, the presence of chromosomal instability may help distinguish patients with clinically significant cervical lesions from those who have insignificant lesions, thus discriminating lesions (Table 4). The ease and low cost of the detection of MN may allow its use as a prognostic indicator dur- ing the planning and validation of programs for cancer monitoring and prevention. In brief, MN scoring on the epithelial cells of the cervix could be used as a biomarker in cancer screening. This is an easy, simple, reliable, re- producible, and objective test that can be performed on routine stained smears. Further investigations are required to confirm and validate the results of chromosomal abnormalities, SCE, and comet assay. Moreover, the results of DBD-FISH are preliminary. Conclusions and future directions. Cervical cancer is the corollary of a long process that has its onset in LG- SIL and HG-SIL precursor lesions. Vaccination against HPV infection and periodical Papanicolaou cervical cy- tological screening are effective measures for preventing cervical cancer. Despite the effectiveness of Papanicolaou examinations, the detection of chromosomal instability as an early biomarker of cervical cancer risk should be improved, to reduce the incidence of cervical cancer. Ad- ditional research is needed, not only to gain better insight into the association between the frequency of MN and cancer, but also to evaluate the benefits of including bio- markers of cancer risk in the surveillance of populations at increased environmental or genetic risk. The former goal is easier to achieve, and plans already exist within the framework of the HUMN project for increasing the size of the study group, both by including new national cohorts and by extending the length of the follow-up period for those cohorts currently included in the study. The latter goal implies an improved understanding of the association between chromosome instability and cervical cancer. In particular, the consideration of the role of possible confounders and effect modifiers, such as diet, oxidative stress, and genetic polymorphisms, would be desirable before the routine application of these biomark- ers in population studies aimed at estimating the risk of cancer. E.I. Cortés-Gutiérrez, M.I. Dávila-Rodríguez, R.M. Cerda-Flores ÕÐÎÌÎÑÎÌÍÛÅ ÏÎÂÐÅÆÄÅÍÈß ÊÀÊ ÏÐÎÃÍÎÇÍÛÅ ÌÀÐÊÅÐÛ ÊÀÐÖÅÍÎÃÅÍÅÇÀ ØÅÉÊÈ ÌÀÒÊÈ Ðàê øåéêè ìàòêè ÿâëÿåòñÿ òðåòüèì ïî ðàñïðîñò- ðàíåííîñòè â ìèðå òèïîâ ðàêà ó æåíùèí è íàè- áîëåå ÷àñòî âñòðå÷àþùèìñÿ ó æåíùèí Ìåêñèêè è Ëàòèíñêîé Àìåðèêè. Ôàêòîðû ðèñêà, ñâÿçàííûå ñ ðàçâèòèåì èíòðàýïèòåëèàëüíîé öåðâèêàëüíîé íåî- ïëàçèè, ïðåäïîëàãàþò, ÷òî ïàïèëëîìàâèðóñ ÷åëîâåêà (HPV) òèïîâ 16, 18, 31 è 33 âëå÷åò çà ñîáîé âûñîêèé ðèñê ðàçâèòèÿ îïóõîëåé ýòîãî òèïà. Íàêîïëåíèå ãå- íåòè÷åñêèõ èçìåíåíèé äåëàåò âîçìîæíûì ðîñò îïó- õîëåâûõ êëåòîê; õðîìîñîìíàÿ íåñòàáèëüíîñòü ÿâ- ëÿåòñÿ ñîáûòèåì, êîòîðîå ïðåäøåñòâóåò ïðåäðàêî- âûì ñòàäèÿì. Âîçìîæíûå áèîìàðêåðû ðèñêà îïóõî- ëè âêëþ÷àþò öèòîãåíåòè÷åñêèå êðèòåðèè, òàêèå êàê õðîìîñîìíûå àáåððàöèè, îáìåí ñåñòðèíñêèõ õðîìà- òèä, ìèêðîÿäðà, è çàêàí÷èâàþòñÿ Comet-àíàëèçîì è ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 360 E.I. Cortés-Gutiérrez, M.I. Dávila-Rodríguez, R.M. Cerda-Flores äåòåêöèåé ïîëîìîê ÄÍÊ ñ ïîìîùüþ ôëþîðåñöåíò- íîé ãèáðèäèçàöèè in situ. Îáðàçöû, èäåíòèôèöèðî- âàííûå â òàêèõ öèòîãåíåòè÷åñêèõ èññëåäîâàíèÿõ, ïî- êàçûâàþò, ÷òî õðîìîñîìíàÿ íåñòàáèëüíîñòü ÿâëÿåòñÿ òðàíçèåíòíûì ïðîìåæóòî÷íûì çâåíîì â ðàçâèòèè öåðâèêàëüíûõ íàðóøåíèé.  ýòîé ñâÿçè ìåõàíèçìû, êîòîðûå ìîãóò ëåæàòü â îñíîâå ïðîãðåññèðóþùåé ãåíåòè÷åñêîé íåñòàáèëüíîñòè ó òàêèõ ïàöèåíòîâ, êà- æóòñÿ íåïîñðåäñòâåííî ñâÿçàííûìè ñ èíôåêöèåé HPV. Íàñòîÿùåå èññëåäîâàíèå ïîêàçûâàåò, ÷òî õðî- ìîñîìíàÿ íåñòàáèëüíîñòü ìîæåò ñëóæèòü áèîìàð- êåðîì äëÿ ïðåäñêàçàíèÿ ðàçâèòèÿ èíòðàýïèòåëè- àëüíîé öåðâèêàëüíîé íåîïëàçèè, òåì íå ìåíåå ýòè ðåçóëüòàòû äîëæíû áûòü îöåíåíû â áîëåå ìàñøòàá- íûõ èññëåäîâàíèÿõ. REFERENCES 1. Mohar A., Frías-Mendívil M. Epidemiology of cervi- cal cancer // Cancer Invest. – 2000. – 18, ¹ 6. – P. 584–590. 2. Solomo D., Schiffman M., Tarone R. Comparison of three management strategies for patients with atypi- cal squamous cells of undetermined significance: baseline results from a randomized trial // J. Nat. Cancer Inst. – 2001. – 93, ¹ 4. – P. 293–299. 3. Patten S.F. Diagnostic cytology of the uterine cer- vix. – Basel : Karger, 1978. – Vol. 3. – 336 p. 4. Herrington C.S. Human papillomavirus and cervical neoplasia. 1. Classification, virology, pathology, and epidemiology // J. Clin. Pathol. – 1994. – 4, ¹ 12. – P. 1066–1072. 5. Hsu T.C., Cherry L.M., Saaman N.A. Differenñial mutagen susceptibility in cultured lymphocytes of normal individuals and cancer patients // Cancer Genet. Cytogenet. – 1985. – 17, ¹ 4. – P. 307– 313. 6. McKenna D.J., McKeown S.R., McKelvery-Martin V.J. Potential use of the comet assay in the clinical man- agement of cancer // Mutagenesis. – 2008. – 23, ¹ 3. – P. 183–190. 7. Valverde M., Rojas E. Environmental and occupa- tional biomonitoring using the comet assay // Mu- tat. Res. – 2009. – 681, ¹ 1. – P. 93–109. 8. Jianlin I., Jiliang H., Lifen J., Hongping D. Measur- ing the genetic damage in cancer patients during radiotherapy with three genetic end-points // Mu- tagenesis. – 2004. – 19, ¹ 6. – P. 457–464. 9. Heim S., Alimena G., Billstrom R., Mitelman F. Tet- raploid karyotype (92, XXYY) in two patients with acute lymphoblastic leukaemia // Cancer Genet. Cytogenet. – 1987. – 29, ¹ 1. – P. 129–133. 10. Singh M., Mehrotra S., Kalra N., Shukla Y. Correlation of DNA ploidy with progression of cervical cancer // J. Cancer Epidemiol. – 2008. – 2008. – P. 298–495. 11. Olaharski A.J., Sotelo R., Solorza-Luna G., Eastmond D.A. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis // Carci- nogenesis. – 2006. – 27, ¹ 2. – P. 337–343. 12. Atkin N.B. Cytogenetics of carcinoma of the cervix uterine: a review // Cancer Genet. Cytogenet. – 1997. – 95, ¹ 1. – P. 33–39. 13. Cortés-Gutiérrez E.I., Dávila-Rodríguez M.I., Murai- ra-Rodríguez M., Cerda-Flores R.M. Association be- tween the stages of cervical cancer and chromosome 1 aneusomy // Cancer Genet. Cytogenet. – 2005. – 159, ¹ 1. – P. 44–47. 14. Wang X., Zheng B., Zhang R.R., Liu H. Automated analysis of fluorescent in situ hybridization (FISH) labeled genetic biomarkers in assisting cervical cancer diagnosis // Technol. Cancer Res. Treat. – 2010. – 9, ¹ 3. – P. 231–242. 15. Cheung T.H., Chung T.K., Poon C.S., Wong Y.F. Allelic loss on chromosome 1 is associated with tumor pro- gression of cervical carcinoma // Cancer. – 1999. – 86, ¹ 7. – P. 1294–1298. 16. Segers P., Haesen S., Castelain P., Kirsch-Volders M. Study of numerical aberrations of chromosome 1 by fluorescent in situ hybridization and DNA content by densitometric analysis on (pre)-malignant cervical lesions // Histochem. J. – 1995. – 27, ¹ 1. – P. 24– 34. 17. Segers P., Haesen S., Amy J.J., Kirsch-Volders M. De- tection of premalignant stages in cervical smears with a biotinylated probe for chromosome 1 // Cancer Genet. Cytogenet. – 1994. – 75, ¹ 2. – P. 120– 129. 18. Kurtycz D., Nuñez M., Bauman C., Meisner L. Use of fluorescent in situ hybridization to detect aneuploidy in cervical dysplasia // Diagn. Cytopathol. – 1996. – 15, ¹ 1. – P. 46–51. 19. Mian C., Bancher D., Kohlberger P. et al. Fluores- cence in situ hybridization in cervical smears: detec- tion of numerical aberrations of chromosomes 7, 3, and X and relationship to HPV infection // Gynecol. Oncol. – 1999. – 75, ¹ 1. – P. 41–46. 20. Southern S.A., Herrington C.S. Interphase karyotypic analysis of chromosomes 11, 17 and X in invasive squamous-cell carcinoma of the cervix: morphologi- cal correlation with HPV infection // Int. J. Cancer. – 1997. – 70, ¹ 5. – P. 502–507. 21. Hariu H., Matsuta M. Cervical cytology by means of fluorescence in situ hybridization with a set of chro- mosome-specific DNA probes // J. Obstet. Gynae- col. Res. – 1996. – 22, ¹ 2. – P. 163–170. 22. Le B.M. Molecular biology of cancer cytogenetics // Cancer: Principles and Practice of Oncology / Eds V.T. DeVita, S. Hellman, S.A. Rosenberg. – Lippin- cott-Raven publ., 1997. – Vol. 1. – P. 103–119. 23. Murty V.V., Mitra A.B., Luthra U.K. Spontaneous chromosomal aberrations in patients with precancer- ous and cancerous lesions of the cervix uteri // Can- cer Genet. Cytogenet. – 1985. – 1, ¹ 4. – P. 347– 353. 24. Cooke D., Allen J., Clare M.G., Hederson L. Sta- ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 3 61 Chromosomal damage as prognosis marker in cervical carcinogenesis abstract tistical methods for sister chromatid exchange ex- periments // Statistical evaluation of mutagenicity test data / Ed. D.J. Kirkland. – Cambridge : Univ. press., 1989. – Vol. 1. – P. 155–183. 25. Carrano A.V., Thompson L.H., Lindl P.A., Minkler J.L. Sister chromatid exchange as an indicator of mutagenesis // Nature. – 1978. – 271, ¹ 5645. – P. 551–553. 26. Skolnick M., Livingston G.K., Fineman R.M. et al. Genetics of breast cancer: genealogical clusters, ma- jor genes, linkage and sister chromatid exchange as a preclinical marker // Amer. J. Hum. Genet. – 1980. – 32, ¹ 1. – P. A151. 27. Nordenson I., Beckman L., Liden S., Stjernber N. Chromosomal aberrations and cancer risk // Hum. Hered. – 1984. – 34, ¹ 2. – P. 76–81. 28. Mitra A.B., Murty V.V., Luthra U.K. Sister chromatid exchange in leukocytes of patients with cancer of cervix uteri // Hum. Genet. – 1982. – 60, ¹ 3. – P. 214–215. 29. Murty V.V., Mitra A.B., Luthra U.K., Sing I.P. Sister chromatid exchanges in patients with precancerous and cancerous lesions of cervix uteri // Hum. Genet. – 1986. – 72, ¹ 1. – P. 37–42. 30. Lukovic L., Milassin J. Sister chromatid exchanges in patients with carcinoma in situ of cervix uteri // Can- cer Genet. Cytogenet. – 1992. – 59, ¹ 1. – P. 84– 85. 31. Dhillon V.S., Kler R.S., Dhillon I.K. Chromosome in- stability and sister chromatid exchange (SCE) studies in patients with carcinoma of cervix uteri // Cancer Genet. Cytogenet. – 1996. – 86, ¹ 1. – P. 54–57. 32. Yokota K., Ueda K., Fujiwara A. Increased spontane- ous and mitomicin C-induced sister chromatid ex- changes in patients with cancer of the cervix uteri, with special reference to stage of cancer // Cancer Genet. Cytogenet. – 1989. – 43, ¹ 1. – P. 79–97. 33. Capalash N., Sobti R.C. Spontaneous genomic fra- gility and cell cycle progression in lymphocytes of patients with cervical carcinoma // Cancer Genet. Cytogenet. – 1996. – 88, ¹ 1. – P. 30–44. 34. Cortés-Gutiérrez E.I., Cerda-Flores R.M., Leal-Gar- za C.H. Sister chomatid exchanges in peripheral lym- phocytes from women with carcinoma of the uterine cervix // Cancer Genet. Cytogenet. – 2000. – 122, ¹ 2. – P. 121–123. 35. Adhvaryu S.G., Vyas R.C., Dave B.J., Parkh B.N. Spontaneous and induced sister chromatid exchange frequencies and cell cycle progression in lymphocy- tes of patients with carcinoma of the uterine cervix // Cancer Genet. Cytogenet. – 1985. – 14, ¹ 1/2. – P. 67–72. 36. Holland N., Bolognesi C., Kirsch-Volders M. et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps // Mutat. Res. – 2008. – 659, ¹ 1/2. – P. 93–108. 37. Delfino V., Casartelli G., Garzoglio B. et al. Micro- nuclei and p53 accumulation in preneoplastic and malignant lesions in the head and neck // Mutagen- esis. – 2002. – 17, ¹ 1. – P. 73–77. 38. Casartelli G., Bonatti S., De Ferrari M. et al. Micro- nucleus frequencies in exfoliated buccal cells in nor- mal mucosa, precancerous lesions and squamous cell carcinoma // Anal. Quant. Cytol. Histol. – 2000. – 22, ¹ 6. – P. 486–492. 39. Desai S.S., Ghaisas S.D., Jakhi S.D., Bhide S.V. Cy- togenetic damage in exfoliated oral mucosal cells and circulating lymphocytes of patients suffering from precancerous oral lesions // Cancer Lett. – 1996. – 109, ¹ 1/2. – P. 9–14. 40. Rajeswari N., Ahuja Y.R., Malini U. et al. Risk assess- ment in first degree female relatives of breast cancer patients using the alkaline Comet assay // Carcino- genesis. – 2000. – 21, ¹ 4. – P. 557–561. 41. Saran R., Tiwari R.K., Reddy P.P., Ahuja Y.R. Risk assessment of oral cancer in patients with pre-can- cerous states of the oral cavity using micronucleus test and challenge assay // Oral. Oncol. – 2008. – 44, ¹ 7. – P. 354–360. 42. Larmarcovai G., Ceppi M., Botta A., Bonassi S. Mi- cronuclei frequency in peripheral blood lymphocytes of cancer patients: a meta-analysis // Mutat. Res. – 2008. – 659, ¹ 3. – P. 274–283. 43. Fenech M., Morley A.A. Cytokinesis-block micro- nucleus method in human lymphocytes: effect of in vivo ageing and low-dose X-irradiation // Mutat. Res. – 1986. – 161, ¹ 2. – P. 193–198. 44. Tolbert P.E., Shy C.M., Allen J.W. Micronuclei and other nuclear anomalies in buccal smears: methods development // Mutat. Res. – 1992. – 271, ¹ 1. – P. 69–77. 45. Nersesyan A.K. Possible role of the micronucleus as- say in diagnostics and secondary prevention of cervix cancer: a minireview // Cytology and Genetics. – 2007. – 41, ¹ 5. – P. 317–318. 46. Guzman P., Sotelo-Regil R.C., Mohar A., Gonsebat M.E. Positive correlation between the frequency of micronucleated cells and dysplasia in Papanicolaou smears // Environ. Mol. Mutagen. – 2003. – 41, ¹ 5. – P. 339–343. 47. Leal-Garza C.H., Cerda-Flores R.M., Leal-Garza C.H., Cortés-Gutiérrez E.I. Micronuclei in cervical smears and peripheral blood lymphocytes from women with and without cervical uterine cancer // Mutat. Res. – 2002. – 25, ¹ 1/2. – P. 57–62. 48. Bonassi S., Znaor A., Ceppi M. et al. An increased micronucleus frequency in peripheral blood lympho- cytes predicts the risk of cancer in humans // Carci- nogenesis. – 2007. – 28, ¹ 3. – P. 625–631. 49. Norppa H., Bonassi S., Hansteen I.L. et al. Chromo- somal aberrations and SCEs as biomarkers of cancer risk // Mutat. Res. – 2006. – 600, ¹ 1/2. – P. 37– 45. ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 362 E.I. Cortés-Gutiérrez, M.I. Dávila-Rodríguez, R.M. Cerda-Flores 50. Chakrabarti R.N., Dutta K. Micronuclei test in rou- tine smears from uterine cervix // Eur. J. Gynaecol. Oncol. – 1988. – 9, ¹ 5. – P. 370–372. 51. Cerqueira E.M., Santoro C.L., Donozo N.F., Macha- do-Santelli G.M. Genetic damage in exfoliated cells of the uterine cervix. Association and interaction between cigarette smoking and progression to ma- lignant transformation // Acta Cytol. – 1998. – 42, ¹ 3. – P. 639–649. 52. Campos L.M.R., Dias F.L., Antunes L.M., Murta E.F. Prevalence of micronuclei in exfoliated uterine cer- vical cells from patients with risk factors for cervi- cal cancer // São Paulo Med. J. – 2008. – 126, ¹ 6. – P. 323–328. 53. Aires G.M., Meireles J.R., Oliveira P.C. et al. Micro- nuclei as biomarkers for evaluating the risk of malig- nant transformation in the uterine cervix // Genet. Mol. Res. – 2011. – 10, ¹ 3. – P. 1558–1564. 54. Samanta S., Dey P., Nijhawan R. Micronucleus in cervical intraepithelial lesions and carcinoma // Acta Cytol. – 2011. – 55, ¹ 1. – P. 42–47. 55. Samanta S., Dey P., Gupta N., Nijhawan R. Micro- nucleus in atypical squamous cell of undetermined significance // Diagn. Cytopathol. – 2010. – 39, ¹ 4. – P. 242–244. 56. Murgia E., Ballardin M., Bonassi S., Barale R. Vali- dation of micronuclei frequency in peripheral blood lymphocytes as early cancer risk biomarker in a nest- ed case-control study // Mutat. Res. – 2008. – 639, ¹ 1/2. – P. 27–34. 57. Bonassi S., Ugolini D., Kirsch-Volders M. et al. Human population studies with cytogenetic biomarkers: re- view of the literature and future prospectives // En- viron. Mol. Mutagen. – 2005. – 45, ¹ 2/3. – P. 258– 270. 58. Udumudi A., Jaiswal M., Rajeswari N. et al. Risk as- sessment in cervical dysplasia patients by single cell gel electrophoresis assay : A study of DNA damage and re- pair // Mutat. Res. – 1998. – 30, ¹ 2. – P. 195–205. 59. Cortés-Gutiérrez E.I., Dávila-Rodríguez M.I., Zamudio- González E.A. et al. DNA damage in Mexican women with cervical dysplasia evaluated by comet assay // Anal. Quant. Cytol. Histol. – 2010. – 32, ¹ 4. – P. 207–213. 60. Fernández J.L., Goyanes, V., Ramiro-Diaz, J., Gos- álvez J. Application of FISH for in situ detection and quantification of DNA breakage // Cytogenet. Cell Genet. – 1998. – 82, ¹ 3/4. – P. 251–256. 61. Fernández J.L., Vázquez G.F., Rivero M.T. et al. DBD- FISH on neutral comets: simultaneous analysis of DNA single- and double-strand breaks in individ- ual cells // Exp. Cell Res. – 2001. – 270, ¹ 1. – P. 102–109. 62. Fernández J.L., Gosálvez J. Application of FISH to detect DNA damage: DNA breakage detection- FISH (DBD-FISH) // Meth. Mol. Biol. – 2002. – 203, ¹ 1. – P. 203–216. 63. Cortés-Gutiérrez E.I., Dávila-Rodríguez M.I., López- Fernández C. et al. Alkali-labile sites in sperm cells from Sus and Ovis species // Int. J. Androl. – 2008. – 31, ¹ 3. – P. 354–363. 64. Darzynkiewicz Z., Huang X., Okafuji M. Detection of DNA strand breaks by flow and laser scanning cy- tometry in studies of apoptosis and cell proliferation (DNA replication) // Meth. Mol. Biol. – 2006. – 314, ¹ 1. – P. 81–93. 65. Gore J., Bryant Z., Nöllmann M. et al. DNA over- winds when stretched // Nature. – 2006. – 442, ¹ 7104. – P. 836–839. 66. Fernández J.L., Vazquez G.F., Rivero M.T. et al. Evi- dence of abundant constitutive alkali-labile sites in human 5 bp classical satellite DNA loci by DBD- FISH // Mutat. Res. – 2001. – 473, ¹ 2. – P. 163– 168. 67. Rivero M.T., Vazquez-Gundín F., Goyanes V. et al. High frequency of constitutive alkali-labile sites in mouse major satellite DNA, detected by DNA break- age detection-fluorescence in situ hybridization // Mutat. Res. – 2001. – 483, ¹ 1/2. – P. 43–50. 68. Rivero M.T., Mosquera A., Goyanes V., Fernández J.L. Differences in repair profiles of interstitial telomeric sites between normal and DNA double-strand ALS in mammalian sperm break repair deficient Chi- nese hamster cells // Exp. Cell Res. – 2004. – 295, ¹ 1. – P. 161–172. 69. López-Fernández C., Arroyo F., Fernández J.L., Gosá- lvez J. Interstitial telomeric sequence blocks in con- stitutive pericentromeric heterochromatin from Pyr- gomorpha conica (Orthoptera) are enriched in con- stitutive alkali-labile sites // Mutat. Res. – 2006. – 599, ¹ 1/2. – P. 36–44. 70. Cortés-Gutiérrez E.I., Dávila-Rodríguez E.I., Fernán- dez J.L., Gosálvez J. DNA damage in women with cervical neoplasia evaluated by DNA breakage de- tection-fluorescence in situ hybridization // Anal. Quant. Cytol. Histol. – 2011. – 33, ¹ 3. – P. 175– 181. 71. Fenech M., Rinaldi J. The relationship between mi- cronuclei in human lymphocytes and plasma levels of vitamin C, vitamin E, vitamin B12 and folic acid // Carcinogenesis. – 1994. – 15, ¹ 7. – P. 1405–1411. 72. Titenko H.N., Jacob R.A., Shang N., Smith M.T. Micronuclei in lymphocytes and exfoliated buccal cells of postmenopausal women with dietary changes in folate // Mutat. Res. – 1998. – 417, ¹ 2/3. – P. 101–114. 73. Chen Y.C., Hunter D.J. Molecular epidemiology of cancer // Cancer J. Clin. – 2005. – 55, ¹ 1. – P. 45– 54. 74. Alvarez R.R., Rodriguez A.J., Arboleda-Moreno Y.Y. et al. Chromosome aberrations in peripheral blood lymphocytes of high-risk HPV-infected women with HGSIL // Environ. Mol. Mutagen. – 2008. – 49, ¹ 9. – P. 688–694. ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 3 63 Chromosomal damage as prognosis marker in cervical carcinogenesis 75. Cortés-Gutiérrez E.I., Dávila-Rodríguez M.I., Vargas- Villarreal J., Cerda-Flores R.M. Association between human papilloma virus-type infections with micro- nuclei frequencies // Prague Med. Rep. – 2010. – 111, ¹ 1. – P. 35–41. 76. Bierkens M., Wilting S.M., Wieringen V. et al. Chro- mosomal profiles of high-grade cervical intraepitheli- al neoplasia relate to duration of preceding high-risk human papillomavirus infection // Int. J. Cancer. – 2011. – 131, ¹ 4. – P. E579–585. 77. Duensing S., M nger K. Mechanisms of genomic in- stability in human cancer, insights from studies with human papillomavirus oncoproteins // Int. J. Can- cer. – 2004. – 109, ¹ 2. – P. 157–162. 78. Pett M., Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis // J. Pathol. – 2007. – 212, ¹ 4. – P. 356–367. 79. Korzeniewski N., Spardy N., Duensing A., Duensing S. Genomic instability and cancer: lessons learned from human papillomaviruses // Cancer Lett. – 2011. – 305, ¹ 2. – P. 113–122. 80. Popescu N.C., Zimonjic D., Dipaolo J.A. Viral integra- tion, fragile sites and proto-oncogenes in human neo- plasia // Hum. Genet. – 1990. – 84, ¹ 5. – P. 383– 386. 81. Wilczynski S.P., Walker J., Liao S.Y., Berman M. Adenocarcinoma of the cervix associated with hu- man papillomavirus // Cancer. – 1988. – 62, ¹ 7. – P. 1331–1336. 82. Ozkal P., Ilgin-Ruhi H., Akdogan M., Sasmaz N. The genotoxic effects of hepatitis B virus to host DNA // Mutagenesis. – 2005. – 20, ¹ 2. – P. 147–150. 83. Pan H., Zhou F., Gao S.J. Kaposi’s sarcoma-associ- ated herpesvirus induction of chromosome instability in primary human endothelial cells // Cancer Res. – 2004. – 64, ¹ 12. – P. 4064–4068. 84. Majone F., Luisetto R., Zamboni D. et al. Ku protein as a potential human T-cell leukemia virus type 1 (HTLV-1) Tax target in clastogenic chromosomal instability of mammalian cells // Retrovirology. – 2005. – 2, ¹ 1. – P. 45. 85. Van Wijnen A.J., Bidwell J.P., Fey E.G. et al. Nu- clear matrix association of multiple sequence-spe- cific DNA binding activities related to SP-1, ATF, CCAAT, C/EBP, OCT-1, and AP-1 // Biochemis- try. – 1993. – 32, ¹ 33. – P. 8397–8402. 86. Lee K.A., Shim J.H., Kho C.W. et al. Protein profil- ing and identification of modulators regulated by the nE7 oncogene in the C33A cell line by proteomics and genomics // Proteomics. – 2004. – 4, ¹ 3. – P. 839–848. Received 01.06.12 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 1200 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages false /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 1200 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages false /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages false /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice