Aлгебри Лейбніца, усі підалгебри яких є ідеалами
Алгебра L над полем F називається алгеброю Лейбніца (точніше лівою алгеброю Лейбніца), якщо вона задовольняє таку тотожність Лейбніца: [[a, b], c] = [a, [b, c]] — [b, [a, c]] для всіх a, b, c ∈L. Алгебри Лейбніца являють собою узагальнення алгебр Лі. Отримано опис алгебр Лейбніца, кожна підалгебра...
Збережено в:
| Опубліковано в: : | Доповіді НАН України |
|---|---|
| Дата: | 2017 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2017
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/126686 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Aлгебри Лейбніца, усі підалгебри яких є ідеалами / Л.А. Курдаченко, М.М. Семко, І.Я. Субботін // Доповіді Національної академії наук України. — 2017. — № 6. — С. 9-13. — Бібліогр.: 13 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Алгебра L над полем F називається алгеброю Лейбніца (точніше лівою алгеброю Лейбніца), якщо вона
задовольняє таку тотожність Лейбніца: [[a, b], c] = [a, [b, c]] — [b, [a, c]] для всіх a, b, c ∈L. Алгебри
Лейбніца являють собою узагальнення алгебр Лі. Отримано опис алгебр Лейбніца, кожна підалгебра яких є
ідеалом.
Алгебра L над полем F называется алгеброй Лейбница (точнее левой алгеброй Лейбница), если она удовлетворяет следующему тождеству Лейбница: [[a, b], c] = [a, [b, c]] — [b, [a, c]] для всех a, b, c ∈L. Алгебры Лейбница представляют собой обобщение алгебр Ли. Получено описание алгебр Лейбница, каждая подалгебра
которых является идеалом.
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the
Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈L. Leibniz algebras are generalizations of Lie
algebras. A description of Leibniz algebras, whose subalgebras are ideals, is given.
|
|---|---|
| ISSN: | 1025-6415 |