Про зображення алгебр, породжених скінченним розкладом одиниці та набором ортогональних проекторів

Досліджено властивості зображень інволютивної алгебри, породженої самоспряженими ідемпотентами q₁, . . ., qn та p₁, . . ., pm , що задовольняють співвідношення q₁ + . . . + qn = e, pj pk = 0 , j ≠ k. Відповідні набори проекторів у гільбертовому просторі виникають при дослідженні фредгольмовості те...

Full description

Saved in:
Bibliographic Details
Published in:Доповіді НАН України
Date:2017
Main Authors: Ашурова, Е.Н., Островський, В.Л., Самойленко, Ю.С.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2017
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/126977
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Про зображення алгебр, породжених скінченним розкладом одиниці та набором ортогональних проекторів / Е.Н. Ашурова, В.Л. Островський, Ю.С. Самойленко // Доповіді Національної академії наук України. — 2017. — № 10. — С. 3-9. — Бібліогр.: 7 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Досліджено властивості зображень інволютивної алгебри, породженої самоспряженими ідемпотентами q₁, . . ., qn та p₁, . . ., pm , що задовольняють співвідношення q₁ + . . . + qn = e, pj pk = 0 , j ≠ k. Відповідні набори проекторів у гільбертовому просторі виникають при дослідженні фредгольмовості тепліцевих операторів. Зокрема, для незвідних зображень загального положення з dim Pj = 1, j = 1, . . . , m, знайдено комутатив- ний набір нормальних операторів, сумісний спектр якого визначає зображення з точністю до унітарної еквівалентності. Исследованы свойства представлений инволютивной алгебры, порожденной самосопряженными идемпотентами q₁, . . ., qn и p₁, . . ., pm, удовлетворяющими соотношениям q₁ + . . . + qn = e, pj pk = 0, j ≠ k. Соответствующие наборы проекторов в гильбертовом пространстве возникают при исследовании фредгольмовости тёплицевых операторов. В частности, для неприводимых представлений общего положения с dim Pj = 1, j = 1 . . . , m, найден набор коммутирующих нормальних операторов, совместный спектр которых определяет соотношение с точностью до унитарной эквивалентности. We study properties of representations of the involutive algebra generated by self-adjoint idempotents, q₁, . . ., qn and p₁, . . ., pm, which satisfy the conditions q₁ + . . . + qn = e, pj pk = 0, j ≠ k. The corresponding collections of projections in a Hilbert space arise in the study of the Fredholm properties of Toeplitz operators. In particular, for generic irredu cible representations with dim Pj = 1, j = 1 . . . , m, we have constructed a commuting family of normal operators, whose joint spectrum determines the representation up to unitary equivalence.
ISSN:1025-6415