Класифікація диференціальних рівнянь за симетрійними властивостями (за матеріалами наукового повідомлення на засіданні Президії НАН України 5 липня 2017 р.)

У доповіді розглянуто задачу класифікації ліївських симетрій у класах нелінійних диференціальних рівнянь з частинними похідними. Такі симетрії, зокрема, дозволяють відібрати фізично важливі рівняння з певного класу, а також побудувати їх точні розв'язки. Для багатьох класів рівнянь, що є важ...

Full description

Saved in:
Bibliographic Details
Published in:Вісник НАН України
Date:2017
Main Author: Ванєєва, О.О.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2017
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/127095
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Класифікація диференціальних рівнянь за симетрійними властивостями (за матеріалами наукового повідомлення на засіданні Президії НАН України 5 липня 2017 р.) / О.О. Ванєєва // Вісник Національної академії наук України. — 2017. — № 9. — С. 33-40. — Бібліогр.: 24 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:У доповіді розглянуто задачу класифікації ліївських симетрій у класах нелінійних диференціальних рівнянь з частинними похідними. Такі симетрії, зокрема, дозволяють відібрати фізично важливі рівняння з певного класу, а також побудувати їх точні розв'язки. Для багатьох класів рівнянь, що є важливими для застосувань, класичні методи групового аналізу не дозволяють отримати вичерпну класифікацію симетрій. Такі задачі потребують нових підходів, більшість з яких ґрунтуються на використанні невироджених точкових перетворень. На прикладах групової класифікації узагальнених рівнянь Кавахари та квазілінійних рівнянь реакції—дифузії показано ефективність нещодавно розроблених методів, зокрема відшукання найбільш широких груп еквівалентності та відображень між класами. The report is devoted to the problem of Lie symmetry classification for classes of nonlinear partial differential equations. Such symmetries allow one, in particular, to select equations of potential physical interest and to construct their exact solutions. For many classes of partial differential equations which are important for applications classical methods of group analysis do not result in exhaustive group classification. Such complicated group classification problems require new tools to be solved completely. Majority of the modern approaches are based on the usage of nondegenerate point transformations. Using the group classifications of variable coefficient generalized Kawahara equations and quasilinear reaction—diffusion equations as illustrative examples, we show the effectiveness of the recently developed approaches. These approaches include, in particular, the construction of the widest possible equivalence groups and the method of mapping between classes.
ISSN:0372-6436