Discrete breathers in an one-dimensional array of magnetic dots
The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and ti...
Збережено в:
| Опубліковано в: : | Физика низких температур |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2015
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/128076 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is
investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is
governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as
discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum
limit and consist of the core where the magnetization vectors precess around the hard axis and the tails
where the magnetization vectors oscillate around the equilibrium position.
|
|---|---|
| ISSN: | 0132-6414 |