Discrete breathers in an one-dimensional array of magnetic dots

The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and ti...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Физика низких температур
Дата:2015
Автори: Pylypchuk, R.L., Zolotaryuk, Y.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/128076
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails where the magnetization vectors oscillate around the equilibrium position.
ISSN:0132-6414