Discrete breathers in an one-dimensional array of magnetic dots
The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and ti...
Saved in:
| Published in: | Физика низких температур |
|---|---|
| Date: | 2015 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/128076 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-128076 |
|---|---|
| record_format |
dspace |
| spelling |
Pylypchuk, R.L. Zolotaryuk, Y. 2018-01-05T17:25:26Z 2018-01-05T17:25:26Z 2015 Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ. 0132-6414 PACS: 63.20.Pw, 63.20.Ry, 75.10.Hk https://nasplib.isofts.kiev.ua/handle/123456789/128076 The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails where the magnetization vectors oscillate around the equilibrium position. We thank V.P. Kravchuk for useful discussions. One of the authors (Y.Z.) acknowledges the financial support from the Ukrainian State Grant for Fundamental Research No. 0112U000056. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Физика низких температур К 80-летию уравнения Ландау–Лифшица Discrete breathers in an one-dimensional array of magnetic dots Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Discrete breathers in an one-dimensional array of magnetic dots |
| spellingShingle |
Discrete breathers in an one-dimensional array of magnetic dots Pylypchuk, R.L. Zolotaryuk, Y. К 80-летию уравнения Ландау–Лифшица |
| title_short |
Discrete breathers in an one-dimensional array of magnetic dots |
| title_full |
Discrete breathers in an one-dimensional array of magnetic dots |
| title_fullStr |
Discrete breathers in an one-dimensional array of magnetic dots |
| title_full_unstemmed |
Discrete breathers in an one-dimensional array of magnetic dots |
| title_sort |
discrete breathers in an one-dimensional array of magnetic dots |
| author |
Pylypchuk, R.L. Zolotaryuk, Y. |
| author_facet |
Pylypchuk, R.L. Zolotaryuk, Y. |
| topic |
К 80-летию уравнения Ландау–Лифшица |
| topic_facet |
К 80-летию уравнения Ландау–Лифшица |
| publishDate |
2015 |
| language |
English |
| container_title |
Физика низких температур |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is
investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is
governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as
discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum
limit and consist of the core where the magnetization vectors precess around the hard axis and the tails
where the magnetization vectors oscillate around the equilibrium position.
|
| issn |
0132-6414 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/128076 |
| citation_txt |
Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ. |
| work_keys_str_mv |
AT pylypchukrl discretebreathersinanonedimensionalarrayofmagneticdots AT zolotaryuky discretebreathersinanonedimensionalarrayofmagneticdots |
| first_indexed |
2025-12-07T17:34:27Z |
| last_indexed |
2025-12-07T17:34:27Z |
| _version_ |
1850871766987046912 |