Discrete breathers in an one-dimensional array of magnetic dots

The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and ti...

Full description

Saved in:
Bibliographic Details
Published in:Физика низких температур
Date:2015
Main Authors: Pylypchuk, R.L., Zolotaryuk, Y.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/128076
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-128076
record_format dspace
spelling Pylypchuk, R.L.
Zolotaryuk, Y.
2018-01-05T17:25:26Z
2018-01-05T17:25:26Z
2015
Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ.
0132-6414
PACS: 63.20.Pw, 63.20.Ry, 75.10.Hk
https://nasplib.isofts.kiev.ua/handle/123456789/128076
The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails where the magnetization vectors oscillate around the equilibrium position.
We thank V.P. Kravchuk for useful discussions. One of the authors (Y.Z.) acknowledges the financial support from the Ukrainian State Grant for Fundamental Research No. 0112U000056.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
К 80-летию уравнения Ландау–Лифшица
Discrete breathers in an one-dimensional array of magnetic dots
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Discrete breathers in an one-dimensional array of magnetic dots
spellingShingle Discrete breathers in an one-dimensional array of magnetic dots
Pylypchuk, R.L.
Zolotaryuk, Y.
К 80-летию уравнения Ландау–Лифшица
title_short Discrete breathers in an one-dimensional array of magnetic dots
title_full Discrete breathers in an one-dimensional array of magnetic dots
title_fullStr Discrete breathers in an one-dimensional array of magnetic dots
title_full_unstemmed Discrete breathers in an one-dimensional array of magnetic dots
title_sort discrete breathers in an one-dimensional array of magnetic dots
author Pylypchuk, R.L.
Zolotaryuk, Y.
author_facet Pylypchuk, R.L.
Zolotaryuk, Y.
topic К 80-летию уравнения Ландау–Лифшица
topic_facet К 80-летию уравнения Ландау–Лифшица
publishDate 2015
language English
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails where the magnetization vectors oscillate around the equilibrium position.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/128076
citation_txt Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ.
work_keys_str_mv AT pylypchukrl discretebreathersinanonedimensionalarrayofmagneticdots
AT zolotaryuky discretebreathersinanonedimensionalarrayofmagneticdots
first_indexed 2025-12-07T17:34:27Z
last_indexed 2025-12-07T17:34:27Z
_version_ 1850871766987046912