Точное решение задачи об электроне в магнитном поле, состоящем из однородного поля и параллельных ему произвольно расположенных магнитных струн
Показано, что требования конечности, однозначности и определенности волновой функции и плотности тока вероятности с необходимостью приводят к тому, что волновые функции электрона при приближении к магнитной струне должны по модулю убывать быстрее, чем корень квадратный расстояния до струны (магнитно...
Збережено в:
| Дата: | 2002 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2002
|
| Назва видання: | Физика низких температур |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/128715 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Точное решение задачи об электроне в магнитном поле, состоящем из однородного поля и параллельных ему произвольно расположенных магнитных струн / И.М. Дубровский // Физика низких температур. — 2002. — Т. 28, № 11. — С. 1183-1194. — Бібліогр.: 11 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Показано, что требования конечности, однозначности и определенности волновой функции и плотности тока вероятности с необходимостью приводят к тому, что волновые функции электрона при приближении к магнитной струне должны по модулю убывать быстрее, чем корень квадратный расстояния до струны (магнитной струной называют бесконечно тонкий соленоид с конечным магнитным потоком). Получен энергетический спектр электрона, в общем случае совпадающий со спектром в отсутствие струн. Найден общий вид собственных функций основного состояния и оператор, действием степеней которого можно получить собственные функции возбужденных состояний. В случае, когда имеется только одна струна с магнитным потоком, не кратным удвоенному кванту потока, в энергетическом спектре появляется еще одна эквидистантная последовательность собственных значений. Она сдвинута по отношению к основной на долю интервала, равную положительной дробной части частного от деления магнитного потока на величину удвоенного кванта. Эта последовательность начинается от уровня, номер которого равен числу остальных магнитных струн. Получены также волновые функции для этих особых состояний. |
|---|