Ortho–para conversion in the solid hydrogens at high pressures

At low pressures the ortho–para conversion in H₂ and D₂ is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Физика низких температур
Дата:2003
Автори: Strzhemechny, M.A., Hemley, R.J.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2003
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/128907
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ortho–para conversion in the solid hydrogens at high pressures / M.A. Strzhemechny, R.J. Hemley // Физика низких температур. — 2003. — Т. 29, № 9-10. — С. 941-946. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-128907
record_format dspace
spelling Strzhemechny, M.A.
Hemley, R.J.
2018-01-14T12:38:35Z
2018-01-14T12:38:35Z
2003
Ortho–para conversion in the solid hydrogens at high pressures / M.A. Strzhemechny, R.J. Hemley // Физика низких температур. — 2003. — Т. 29, № 9-10. — С. 941-946. — Бібліогр.: 30 назв. — англ.
0132-6414
PACS: 61.10.-i, 61.66.-f, 65.70.+y
https://nasplib.isofts.kiev.ua/handle/123456789/128907
At low pressures the ortho–para conversion in H₂ and D₂ is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds itself in an area where phonon states are depleted and conversion slows down. The recent Raman and NMR experiments showed that the conversion rate in H₂ after an initial slowdown predicted by theory increases immensely. As for solid D₂, conversion rates have apparently not yet been directly measured under pressure. In order to explain the anomaly observed in H₂, we have suggested a new conversion mechanism, in which the basic conversion-producing interaction only initiates conversion whereas the energy is removed by rotational excitations via the stronger electric quadrupole-quadrupole interaction. Estimated conversion rates are in good qualitative agreement with available experimental observations. Here we extend the theory to solid D₂ taking into account the differences between H₂ and D₂ in the molecular and solid-state parameters. The new libron-mediated channel is predicted to result for D₂ in conversion rates under pressure that are by an order of magnitude larger than at P = 0.
This work was supported by the CRDF (grant UP2-2445-KH-02) and NSF/DMR. The authors thank A. F. Goncharov for providing his unpublished results. M.A.S. also thanks Irina Legchenkova for technical assistance.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
High-Pressure Studies
Ortho–para conversion in the solid hydrogens at high pressures
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Ortho–para conversion in the solid hydrogens at high pressures
spellingShingle Ortho–para conversion in the solid hydrogens at high pressures
Strzhemechny, M.A.
Hemley, R.J.
High-Pressure Studies
title_short Ortho–para conversion in the solid hydrogens at high pressures
title_full Ortho–para conversion in the solid hydrogens at high pressures
title_fullStr Ortho–para conversion in the solid hydrogens at high pressures
title_full_unstemmed Ortho–para conversion in the solid hydrogens at high pressures
title_sort ortho–para conversion in the solid hydrogens at high pressures
author Strzhemechny, M.A.
Hemley, R.J.
author_facet Strzhemechny, M.A.
Hemley, R.J.
topic High-Pressure Studies
topic_facet High-Pressure Studies
publishDate 2003
language English
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description At low pressures the ortho–para conversion in H₂ and D₂ is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds itself in an area where phonon states are depleted and conversion slows down. The recent Raman and NMR experiments showed that the conversion rate in H₂ after an initial slowdown predicted by theory increases immensely. As for solid D₂, conversion rates have apparently not yet been directly measured under pressure. In order to explain the anomaly observed in H₂, we have suggested a new conversion mechanism, in which the basic conversion-producing interaction only initiates conversion whereas the energy is removed by rotational excitations via the stronger electric quadrupole-quadrupole interaction. Estimated conversion rates are in good qualitative agreement with available experimental observations. Here we extend the theory to solid D₂ taking into account the differences between H₂ and D₂ in the molecular and solid-state parameters. The new libron-mediated channel is predicted to result for D₂ in conversion rates under pressure that are by an order of magnitude larger than at P = 0.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/128907
citation_txt Ortho–para conversion in the solid hydrogens at high pressures / M.A. Strzhemechny, R.J. Hemley // Физика низких температур. — 2003. — Т. 29, № 9-10. — С. 941-946. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT strzhemechnyma orthoparaconversioninthesolidhydrogensathighpressures
AT hemleyrj orthoparaconversioninthesolidhydrogensathighpressures
first_indexed 2025-12-07T18:00:14Z
last_indexed 2025-12-07T18:00:14Z
_version_ 1850873389979271168