Real-space condensation in a dilute Bose gas at low temperature

We show with a direct numerical analysis that a dilute Bose gas in an external potential - which is choosen for simplicity as a radial parabolic well - undergoes at certain temperature Tc a phase transition to a state supporting macroscopic fraction of particles at the origin of the phase space (r=0...

Full description

Saved in:
Bibliographic Details
Published in:Физика низких температур
Date:2001
Main Author: Kulik, I.O.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2001
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/129021
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Real-space condensation in a dilute Bose gas at low temperature / I.O. Kulik // Физика низких температур. — 2001. — Т. 27, № 9-10. — С. 1179-1182. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-129021
record_format dspace
spelling Kulik, I.O.
2018-01-15T13:15:33Z
2018-01-15T13:15:33Z
2001
Real-space condensation in a dilute Bose gas at low temperature / I.O. Kulik // Физика низких температур. — 2001. — Т. 27, № 9-10. — С. 1179-1182. — Бібліогр.: 17 назв. — англ.
0132-6414
PACS: 64.60.-i
https://nasplib.isofts.kiev.ua/handle/123456789/129021
We show with a direct numerical analysis that a dilute Bose gas in an external potential - which is choosen for simplicity as a radial parabolic well - undergoes at certain temperature Tc a phase transition to a state supporting macroscopic fraction of particles at the origin of the phase space (r=0,p=0). Quantization of particle motion in a well wipes out sharp transition but supports a distribution of radial particle density ρ(r) peacked at r=0 (a real-space condensate) as well as the phase-space Wigner distribution density W(r, p) peaked at r=0 and p=0 below the crossover temperature Tc* of order of Tc. Fixed-particle-number canonical ensemble which is a combination of the fixed-μ condensate part and the fixed-m excitation part is suggested to resolve the difficulty of large fluctuation of the particle number (δN~N) in the Bose-Einstein condensation problem treated within the orthodox grand canonical ensemble formalism.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Статьи, посвященные столетию со дня рождения Л. В. Шубникова
Real-space condensation in a dilute Bose gas at low temperature
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Real-space condensation in a dilute Bose gas at low temperature
spellingShingle Real-space condensation in a dilute Bose gas at low temperature
Kulik, I.O.
Статьи, посвященные столетию со дня рождения Л. В. Шубникова
title_short Real-space condensation in a dilute Bose gas at low temperature
title_full Real-space condensation in a dilute Bose gas at low temperature
title_fullStr Real-space condensation in a dilute Bose gas at low temperature
title_full_unstemmed Real-space condensation in a dilute Bose gas at low temperature
title_sort real-space condensation in a dilute bose gas at low temperature
author Kulik, I.O.
author_facet Kulik, I.O.
topic Статьи, посвященные столетию со дня рождения Л. В. Шубникова
topic_facet Статьи, посвященные столетию со дня рождения Л. В. Шубникова
publishDate 2001
language English
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We show with a direct numerical analysis that a dilute Bose gas in an external potential - which is choosen for simplicity as a radial parabolic well - undergoes at certain temperature Tc a phase transition to a state supporting macroscopic fraction of particles at the origin of the phase space (r=0,p=0). Quantization of particle motion in a well wipes out sharp transition but supports a distribution of radial particle density ρ(r) peacked at r=0 (a real-space condensate) as well as the phase-space Wigner distribution density W(r, p) peaked at r=0 and p=0 below the crossover temperature Tc* of order of Tc. Fixed-particle-number canonical ensemble which is a combination of the fixed-μ condensate part and the fixed-m excitation part is suggested to resolve the difficulty of large fluctuation of the particle number (δN~N) in the Bose-Einstein condensation problem treated within the orthodox grand canonical ensemble formalism.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/129021
citation_txt Real-space condensation in a dilute Bose gas at low temperature / I.O. Kulik // Физика низких температур. — 2001. — Т. 27, № 9-10. — С. 1179-1182. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT kulikio realspacecondensationinadilutebosegasatlowtemperature
first_indexed 2025-12-01T08:13:03Z
last_indexed 2025-12-01T08:13:03Z
_version_ 1850859688818638848