Параметрические колебания трехслойных пьезоэлектрических оболочек вращения

Дана постановка задачи о параметрических колебаниях упругой трехслойной пьезооболочки, состоящей из среднего ортотропного диэлектрического или металлического слоя и двух пьезоэлектрических слоев. На основе механических гипотез Кирхгоффа-Лява и адекватных им гипотез относительно электрических полевых...

Full description

Saved in:
Bibliographic Details
Date:2001
Main Authors: Карнаухова, О.В., Козлов, В.И., Рассказов, А.О.
Format: Article
Language:Russian
Published: Інститут гідромеханіки НАН України 2001
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/1292
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Параметрические колебания трехслойных пьезоэлектрических оболочек вращения / О.В. Карнаухова, В.И. Козлов, А.О. Рассказов // Акуст. вісн. — 2001. — Т. 4, N 1. — С. 31-43. — Бібліогр.: 20 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-1292
record_format dspace
spelling Карнаухова, О.В.
Козлов, В.И.
Рассказов, А.О.
2008-07-24T16:01:04Z
2008-07-24T16:01:04Z
2001
Параметрические колебания трехслойных пьезоэлектрических оболочек вращения / О.В. Карнаухова, В.И. Козлов, А.О. Рассказов // Акуст. вісн. — 2001. — Т. 4, N 1. — С. 31-43. — Бібліогр.: 20 назв. — рос.
1028-7507
https://nasplib.isofts.kiev.ua/handle/123456789/1292
534.12+534.143:539.3
Дана постановка задачи о параметрических колебаниях упругой трехслойной пьезооболочки, состоящей из среднего ортотропного диэлектрического или металлического слоя и двух пьезоэлектрических слоев. На основе механических гипотез Кирхгоффа-Лява и адекватных им гипотез относительно электрических полевых величин получены определяющие уравнения для усилий и моментов для различных случаев расположения электродов, типа поляризации и электрических граничных условий. Указано, как с использованием этих уравнений, универсальных уравнений движения, кинематических соотношений и механических граничных условий записать нелинейные и линеаризованные уравнения, описывающие параметрические колебания оболочек произвольной конфигурации. Линеаризованные уравнения описывают области динамической неустойчивости (ОДН). На границе ОДН имеет место гармоническое движение. Это позволяет свести задачу исследования главной ОДН к задачам на собственные значения и статической устойчивости для предварительно нагруженных пьезооболочек. С целью решения таких задач развит метод конечных элементов. Подробно рассмотрена задача о параметрических колебаниях трехслойной цилиндрической пьезопанели указанной структуры. Для шарнирного закрепления ее торцов получено аналитическое решение. Сопоставление конечно-элементного и аналитического решений свидетельствует о высокой точности первого. Решена задача о параметрических колебаниях механически нагруженной пьезооболочки с короткозамкнутыми и разомкнутыми электродами. Обнаружено существенное влияние электрических граничных условий на размеры ОДН, что может быть использовано для контроля колебаний оболочек. Получено конечно-элементное решение задачи о параметрических колебаниях цилиндрической пьезопанели с жестким защемлением торцов. Анализ численных результатов свидетельствует о существенном влиянии механических граничных условий как на размеры, так и на расположение главной ОДН.
Дано постановку задачі про параметричні коливання пружної тришарової п'єзооболонки, що складається з середнього ортотропного діелектричного або металевого шару та двох п'єзоелектричних шарів. На основі механічних гіпотез Кірхгофа-Лява й адекватних їм гіпотез про електричні польові величини одержані визначальні рівняння для зусиль і моментів для різних випадків розміщення електродів, типу поляризації та електричних граничних умов. Вказано, як з використанням цих рівнянь, універсальних рівнянь руху, кінематичних співвідношень і механічних граничних умов записати нелінійні й лінеаризовані рівняння, які описують параметричні коливання оболонок довільної конфігурації. Лінеаризовані рівняння описують області динамічної нестійкості (ОДН). На межі ОДН має місце гармонічний рух. Це дозволяє звести задачу дослідження головної ОДН до задач на власні значення і статичну стійкість для попередньо навантажених п'єзооболонок. Для розв'язання таких задач розвинуто метод скінченних елементів. Детально розглянуто задачу про параметричні коливання тришарової циліндричної п'єзопанелі вказаної структури. Для шарнірного закріплення торців одержано її аналітичний розв'язок. Порівняння скінченно-елементного й аналітичного розв'язків свідчить про високу точність першого. Розв'язано задачу про параметричні коливання механічно навантаженої п'єзооболонки з короткозамкнутими й розімкнутими електродами. Виявлено суттєвий вплив електричних граничних умов на розміри ОДН, що може бути використано для контролю параметричних коливань оболонок. Одержано скінченно-елементний розв'язок задачі про параметричні коливання циліндричної п'єзопанелі з жорстким закріпленням торців. Аналіз чисельних результатів свідчить про суттєвий вплив механічних граничних умов як на розміри, так і на розміщення головної ОДН.
The problem of parametrical vibrations of elastic three-layer shells composed from middle orthotropic dielectric or metal layer and two piezoelectrical layers is studied. On the basis of the mechanical Kirchoff-Love hypothesis and adequate assumptions for an electrical field the constitutive equations for forces and moments are obtained for varying electrode positions, type of polarization and electrical boundary conditions. It is shown how nonlinear and linearizated equations describing the parametrical vibrations of the arbitrary shaped shells can be obtained if the constitutive equations, universal equations of motion, kinematical equations and boundary conditions are used. The linearizated equations describe an area of dynamic unstability (ADU). On the boundary of ADU the harmonic motion occurs. This gives an opportunity to reduce the problem of investigations of the main ADU to solving the eigen value problems and the problem of static stability. Method of finite elements is developed to solve these problems. The problem of parametrical vibrations of a three-layered cylindrical piezopanel is considered in detail. The analytical solution of the problem is obtained for the case of simply supported edges. Correlation of an analytical and finite-element solutions demonstrate high accuracy of the first. The problem of parametrical vibrations under harmonic mechanical load is solved for the open-circuted and short-circuted conditions. The essential influence of the electrical boundary conditions on the size of ADU that can be used for control of the parametrical vibrations of the shells is shown. The finite-element solution of the problem of parametrical vibrations of cylindrical piezopanel with clamped edges is obtained. The numerical results point to essential influence of mechanical boundary conditions on the size and position of ADU.
ru
Інститут гідромеханіки НАН України
Параметрические колебания трехслойных пьезоэлектрических оболочек вращения
Parametric vibration of a three-layered piezoelectric shells of revolution
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Параметрические колебания трехслойных пьезоэлектрических оболочек вращения
spellingShingle Параметрические колебания трехслойных пьезоэлектрических оболочек вращения
Карнаухова, О.В.
Козлов, В.И.
Рассказов, А.О.
title_short Параметрические колебания трехслойных пьезоэлектрических оболочек вращения
title_full Параметрические колебания трехслойных пьезоэлектрических оболочек вращения
title_fullStr Параметрические колебания трехслойных пьезоэлектрических оболочек вращения
title_full_unstemmed Параметрические колебания трехслойных пьезоэлектрических оболочек вращения
title_sort параметрические колебания трехслойных пьезоэлектрических оболочек вращения
author Карнаухова, О.В.
Козлов, В.И.
Рассказов, А.О.
author_facet Карнаухова, О.В.
Козлов, В.И.
Рассказов, А.О.
publishDate 2001
language Russian
publisher Інститут гідромеханіки НАН України
format Article
title_alt Parametric vibration of a three-layered piezoelectric shells of revolution
issn 1028-7507
url https://nasplib.isofts.kiev.ua/handle/123456789/1292
citation_txt Параметрические колебания трехслойных пьезоэлектрических оболочек вращения / О.В. Карнаухова, В.И. Козлов, А.О. Рассказов // Акуст. вісн. — 2001. — Т. 4, N 1. — С. 31-43. — Бібліогр.: 20 назв. — рос.
work_keys_str_mv AT karnauhovaov parametričeskiekolebaniâtrehsloinyhpʹezoélektričeskihoboločekvraŝeniâ
AT kozlovvi parametričeskiekolebaniâtrehsloinyhpʹezoélektričeskihoboločekvraŝeniâ
AT rasskazovao parametričeskiekolebaniâtrehsloinyhpʹezoélektričeskihoboločekvraŝeniâ
AT karnauhovaov parametricvibrationofathreelayeredpiezoelectricshellsofrevolution
AT kozlovvi parametricvibrationofathreelayeredpiezoelectricshellsofrevolution
AT rasskazovao parametricvibrationofathreelayeredpiezoelectricshellsofrevolution
first_indexed 2025-12-07T17:08:57Z
last_indexed 2025-12-07T17:08:57Z
_version_ 1850870162764333056
description Дана постановка задачи о параметрических колебаниях упругой трехслойной пьезооболочки, состоящей из среднего ортотропного диэлектрического или металлического слоя и двух пьезоэлектрических слоев. На основе механических гипотез Кирхгоффа-Лява и адекватных им гипотез относительно электрических полевых величин получены определяющие уравнения для усилий и моментов для различных случаев расположения электродов, типа поляризации и электрических граничных условий. Указано, как с использованием этих уравнений, универсальных уравнений движения, кинематических соотношений и механических граничных условий записать нелинейные и линеаризованные уравнения, описывающие параметрические колебания оболочек произвольной конфигурации. Линеаризованные уравнения описывают области динамической неустойчивости (ОДН). На границе ОДН имеет место гармоническое движение. Это позволяет свести задачу исследования главной ОДН к задачам на собственные значения и статической устойчивости для предварительно нагруженных пьезооболочек. С целью решения таких задач развит метод конечных элементов. Подробно рассмотрена задача о параметрических колебаниях трехслойной цилиндрической пьезопанели указанной структуры. Для шарнирного закрепления ее торцов получено аналитическое решение. Сопоставление конечно-элементного и аналитического решений свидетельствует о высокой точности первого. Решена задача о параметрических колебаниях механически нагруженной пьезооболочки с короткозамкнутыми и разомкнутыми электродами. Обнаружено существенное влияние электрических граничных условий на размеры ОДН, что может быть использовано для контроля колебаний оболочек. Получено конечно-элементное решение задачи о параметрических колебаниях цилиндрической пьезопанели с жестким защемлением торцов. Анализ численных результатов свидетельствует о существенном влиянии механических граничных условий как на размеры, так и на расположение главной ОДН. Дано постановку задачі про параметричні коливання пружної тришарової п'єзооболонки, що складається з середнього ортотропного діелектричного або металевого шару та двох п'єзоелектричних шарів. На основі механічних гіпотез Кірхгофа-Лява й адекватних їм гіпотез про електричні польові величини одержані визначальні рівняння для зусиль і моментів для різних випадків розміщення електродів, типу поляризації та електричних граничних умов. Вказано, як з використанням цих рівнянь, універсальних рівнянь руху, кінематичних співвідношень і механічних граничних умов записати нелінійні й лінеаризовані рівняння, які описують параметричні коливання оболонок довільної конфігурації. Лінеаризовані рівняння описують області динамічної нестійкості (ОДН). На межі ОДН має місце гармонічний рух. Це дозволяє звести задачу дослідження головної ОДН до задач на власні значення і статичну стійкість для попередньо навантажених п'єзооболонок. Для розв'язання таких задач розвинуто метод скінченних елементів. Детально розглянуто задачу про параметричні коливання тришарової циліндричної п'єзопанелі вказаної структури. Для шарнірного закріплення торців одержано її аналітичний розв'язок. Порівняння скінченно-елементного й аналітичного розв'язків свідчить про високу точність першого. Розв'язано задачу про параметричні коливання механічно навантаженої п'єзооболонки з короткозамкнутими й розімкнутими електродами. Виявлено суттєвий вплив електричних граничних умов на розміри ОДН, що може бути використано для контролю параметричних коливань оболонок. Одержано скінченно-елементний розв'язок задачі про параметричні коливання циліндричної п'єзопанелі з жорстким закріпленням торців. Аналіз чисельних результатів свідчить про суттєвий вплив механічних граничних умов як на розміри, так і на розміщення головної ОДН. The problem of parametrical vibrations of elastic three-layer shells composed from middle orthotropic dielectric or metal layer and two piezoelectrical layers is studied. On the basis of the mechanical Kirchoff-Love hypothesis and adequate assumptions for an electrical field the constitutive equations for forces and moments are obtained for varying electrode positions, type of polarization and electrical boundary conditions. It is shown how nonlinear and linearizated equations describing the parametrical vibrations of the arbitrary shaped shells can be obtained if the constitutive equations, universal equations of motion, kinematical equations and boundary conditions are used. The linearizated equations describe an area of dynamic unstability (ADU). On the boundary of ADU the harmonic motion occurs. This gives an opportunity to reduce the problem of investigations of the main ADU to solving the eigen value problems and the problem of static stability. Method of finite elements is developed to solve these problems. The problem of parametrical vibrations of a three-layered cylindrical piezopanel is considered in detail. The analytical solution of the problem is obtained for the case of simply supported edges. Correlation of an analytical and finite-element solutions demonstrate high accuracy of the first. The problem of parametrical vibrations under harmonic mechanical load is solved for the open-circuted and short-circuted conditions. The essential influence of the electrical boundary conditions on the size of ADU that can be used for control of the parametrical vibrations of the shells is shown. The finite-element solution of the problem of parametrical vibrations of cylindrical piezopanel with clamped edges is obtained. The numerical results point to essential influence of mechanical boundary conditions on the size and position of ADU.