Magnon–phonon coupling and implications for charge-density wave states and superconductivity in cuprates

The mechanism of high-temperature superconductivity of copper oxides (cuprates) remains unsolved puzzle in condensed matter physics. The cuprates represent extremely complicated system, showing fascinating variety of quantum phenomena and rich phase diagram as a function of doping. In the suggested...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Struzhkin, V.V., Xiao-Jia Chen
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Series:Физика низких температур
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/129309
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Magnon–phonon coupling and implications for charge-density wave states and superconductivity in cuprates / Viktor V. Struzhkin, Xiao-Jia Chen // Физика низких температур. — 2016. — Т. 42, № 10. — С. 1129-1136. — Бібліогр.: 49 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The mechanism of high-temperature superconductivity of copper oxides (cuprates) remains unsolved puzzle in condensed matter physics. The cuprates represent extremely complicated system, showing fascinating variety of quantum phenomena and rich phase diagram as a function of doping. In the suggested “superconducting glue” mechanisms, phonon and spin excitations are invoked most frequently, and it appears that only spin excitations cover the energy scale required to justify very high transition temperature Tc ~ 165 K (as in mercury-based triple layer cuprates compressed to 30 GPa). It appears that pressure is quite important variable helping to boost the Tc record by almost 30°. Pressure may be also considered as a clean tuning parameter, helping to understand the underlying balance of various energy scales and ordered states in cuprates. In this paper, a review of mostly our work on cuprates under pressure will be given, with the emphasis on the interactions between phonon and spin excitations. It appears that there is a strong coupling between superexchange interaction and stretching in-plane oxygen vibrations, which may give rise to a variety of complex phenomena, including the charge-density wave state intertwined with superconductivity and attracting a lot of interest recently.