The confinement of an annealed branched polymer by a potential well
The Lifshitz equation for the confinement of a linear polymer in a spherical cavity of radius R has the form of the Schrödinger equation for a quantum particle trapped in a potential well with flat bottom and infinite walls at radius R. We show that the Lifshitz equation of a confined annealed branc...
Saved in:
| Published in: | Физика низких температур |
|---|---|
| Date: | 2017 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/129359 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The confinement of an annealed branched polymer by a potential well / Alexander Y. Grosberg, Joshua Kelly, Robijn Bruinsma // Физика низких температур. — 2017. — Т. 43, № 1. — С. 122-131. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-129359 |
|---|---|
| record_format |
dspace |
| spelling |
Grosberg, A.Y. Kelly, Joshua Bruinsma, Robijn 2018-01-19T14:04:46Z 2018-01-19T14:04:46Z 2017 The confinement of an annealed branched polymer by a potential well / Alexander Y. Grosberg, Joshua Kelly, Robijn Bruinsma // Физика низких температур. — 2017. — Т. 43, № 1. — С. 122-131. — Бібліогр.: 20 назв. — англ. 0132-6414 PACS: 36.20.–r, 87.15.H– https://nasplib.isofts.kiev.ua/handle/123456789/129359 The Lifshitz equation for the confinement of a linear polymer in a spherical cavity of radius R has the form of the Schrödinger equation for a quantum particle trapped in a potential well with flat bottom and infinite walls at radius R. We show that the Lifshitz equation of a confined annealed branched polymer has the form of the Schrödinger equation for a quantum harmonic oscillator. The harmonic oscillator potential results from the repulsion of the many branches from the potential walls. Mathematically, it must be obtained from the solution of the equation of motion of a second, now classical, particle in a non-linear potential that depends self-consistently on the eigenvalue of the quantum oscillator. The resulting confinement energy has a 1/R⁴ dependence on the confinement radius R, in agreement with scaling arguments. We discuss the application of this result to the problem of the confinement of single-stranded RNA molecules inside spherical capsids. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Физика низких температур К 100-летию со дня рождения И.М. Лифшица The confinement of an annealed branched polymer by a potential well Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The confinement of an annealed branched polymer by a potential well |
| spellingShingle |
The confinement of an annealed branched polymer by a potential well Grosberg, A.Y. Kelly, Joshua Bruinsma, Robijn К 100-летию со дня рождения И.М. Лифшица |
| title_short |
The confinement of an annealed branched polymer by a potential well |
| title_full |
The confinement of an annealed branched polymer by a potential well |
| title_fullStr |
The confinement of an annealed branched polymer by a potential well |
| title_full_unstemmed |
The confinement of an annealed branched polymer by a potential well |
| title_sort |
confinement of an annealed branched polymer by a potential well |
| author |
Grosberg, A.Y. Kelly, Joshua Bruinsma, Robijn |
| author_facet |
Grosberg, A.Y. Kelly, Joshua Bruinsma, Robijn |
| topic |
К 100-летию со дня рождения И.М. Лифшица |
| topic_facet |
К 100-летию со дня рождения И.М. Лифшица |
| publishDate |
2017 |
| language |
English |
| container_title |
Физика низких температур |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
The Lifshitz equation for the confinement of a linear polymer in a spherical cavity of radius R has the form of the Schrödinger equation for a quantum particle trapped in a potential well with flat bottom and infinite walls at radius R. We show that the Lifshitz equation of a confined annealed branched polymer has the form of the Schrödinger equation for a quantum harmonic oscillator. The harmonic oscillator potential results from the repulsion of the many branches from the potential walls. Mathematically, it must be obtained from the solution of the equation of motion of a second, now classical, particle in a non-linear potential that depends self-consistently on the eigenvalue of the quantum oscillator. The resulting confinement energy has a 1/R⁴ dependence on the confinement radius R, in agreement with scaling arguments. We discuss the application of this result to the problem of the confinement of single-stranded RNA molecules inside spherical capsids.
|
| issn |
0132-6414 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/129359 |
| citation_txt |
The confinement of an annealed branched polymer by a potential well / Alexander Y. Grosberg, Joshua Kelly, Robijn Bruinsma // Физика низких температур. — 2017. — Т. 43, № 1. — С. 122-131. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT grosbergay theconfinementofanannealedbranchedpolymerbyapotentialwell AT kellyjoshua theconfinementofanannealedbranchedpolymerbyapotentialwell AT bruinsmarobijn theconfinementofanannealedbranchedpolymerbyapotentialwell AT grosbergay confinementofanannealedbranchedpolymerbyapotentialwell AT kellyjoshua confinementofanannealedbranchedpolymerbyapotentialwell AT bruinsmarobijn confinementofanannealedbranchedpolymerbyapotentialwell |
| first_indexed |
2025-12-07T17:18:40Z |
| last_indexed |
2025-12-07T17:18:40Z |
| _version_ |
1850870774474211328 |