Quantum eigenstate tomography with qubit tunneling spectroscopy

Measurement of the energy eigenvalues (spectrum) of a multi-qubit system has recently become possible by qubit tunneling spectroscopy (QTS). In the standard QTS experiments, an incoherent probe qubit is strongly coupled to one of the qubits of the system in such a way that its incoherent tunneling r...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Authors: Smirnov, Anatoly Yu., Amin, Mohammad H.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Series:Физика низких температур
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/129528
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Quantum eigenstate tomography with qubit tunneling spectroscopy / Anatoly Yu. Smirnov Mohammad H. Amin // Физика низких температур. — 2017. — Т. 43, № 7. — С. 969-977. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Measurement of the energy eigenvalues (spectrum) of a multi-qubit system has recently become possible by qubit tunneling spectroscopy (QTS). In the standard QTS experiments, an incoherent probe qubit is strongly coupled to one of the qubits of the system in such a way that its incoherent tunneling rate provides information about the energy eigenvalues of the original (source) system. In this paper, we generalize QTS by coupling the probe qubit to many source qubits. We show that by properly choosing the couplings, one can perform projective measurements of the source system energy eigenstates in an arbitrary basis, thus performing quantum eigenstate tomography. As a practical example of a limited tomography, we apply our scheme to probe the eigenstates of a kink in a frustrated transverse Ising chain.